A model of Gaussian laser beam self-trapping in optical tweezers for nonlinear particles

2021 ◽  
Vol 53 (8) ◽  
Author(s):  
Quy Ho Quang ◽  
Thanh Thai Doan ◽  
Kien Bui Xuan ◽  
Thang Nguyen Manh
Author(s):  
Sujal Bista ◽  
Sagar Chowdhury ◽  
Satyandra K. Gupta ◽  
Amitabh Varshney

Laser beams can be used to create optical traps that can hold and transport small particles. Optical trapping has been used in a number of applications ranging from prototyping at the microscale to biological cell manipulation. Successfully using optical tweezers requires predicting optical forces on the particle being trapped and transported. Reasonably accurate theory and computational models exist for predicting optical forces on a single particle in the close vicinity of a Gaussian laser beam. However, in practice the workspace includes multiple particles that are manipulated using individual optical traps. It has been experimentally shown that the presence of a particle can cast a shadow on a nearby particle and hence affect the optical forces acting on it. Computing optical forces in the presence of shadows in real-time is not feasible on CPUs. In this paper, we introduce a ray-tracing-based application optimized for GPUs to calculate forces exerted by the laser beams on microparticle ensembles in an optical tweezers system. When evaluating the force exerted by a laser beam on 32 interacting particles, our GPU-based application is able to get a 66-fold speed up compared to a single core CPU implementation of traditional Ashkin’s approach and a 10-fold speedup over its single core CPU-based counterpart.


2021 ◽  
Author(s):  
Quy Quang Ho ◽  
Thanh Doan Thai ◽  
Kien Xuan Bui ◽  
Thang Manh Nguyen

Abstract The optical tweezers are used to trap the particles embedded in a suitable fluid. The optical trap efficiency is significantly enhanced for nonlinear particleswhich response to the Kerr effect. The optical transverse gradient force makes these particles’ mass density in trapping region increasing, and the Kerr medium can be created. When the laser Gaussian beam propagates through it, the self-focusing, and consequentlyself-trappingcan appear. In this paper, a model describing the laser self-trapping in nonlinear particle solution of optical tweezers is proposed. The expressions for the Kerr effect, effective refractive index of nonlinear particle solution and the intensity distribution of reshaped Gaussian laser beam are derived, and the self-trapping of laser beam is numerically investigated. Finally, the guide properties of nonlinear particles-filled trapping region and guiding condition are analysed and discussed.


2006 ◽  
Vol 24 (3) ◽  
pp. 447-453 ◽  
Author(s):  
NARESHPAL SINGH SAINI ◽  
TARSEM SINGH GILL

The problem of nonlinear self-focusing of elliptic Gaussian laser beam in collisionless magnetized plasma is studied using variation approach. The dynamics of the combined effects of nonlinearity and spatial diffraction is presented. With a and b as the beam width parameters of the beam along x and y directions, respectively, the phenomenon of cross-focusing is observed where focusing of a results in defocusing of b and vice versa. Although no stationary self-trapping is observed, oscillatory self-trapping occurs far below the threshold. The regularized phase is always negative.


Author(s):  
Sujal Bista ◽  
Sagar Chowdhury ◽  
Satyandra K. Gupta ◽  
Amitabh Varshney

Laser beams can be used to create optical traps that can hold and transport small particles. Optical trapping has been used in a number of applications ranging from prototyping at the microscale to biological cell manipulation. Successfully using optical tweezers requires predicting optical forces on the particle being trapped and transported. Reasonably accurate theory and computational models exist for predicting optical forces on a single particle in the close vicinity of a Gaussian laser beam. However, in practice the workspace includes multiple particles that are manipulated using individual optical traps. It has been experimentally shown that the presence of a particle can cast a shadow on a nearby particle and hence affect the optical forces acting on it. Computing optical forces in the presence of shadows in real-time is not feasible on CPUs. In this paper, we introduce a ray-tracing-based application optimized for GPUs to calculate forces exerted by the laser beams on microparticle ensembles in an optical tweezers system. When evaluating the force exerted by a laser beam on 32 interacting particles, our GPU-based approach is able to get a 66-fold speed up compared to a single core CPU implementation of traditional Ashkin's approach and a 10-fold speedup over the single core CPU-based implementation of our approach.


2021 ◽  
Author(s):  
Naveen Gupta ◽  
Sandeep Kumar ◽  
A Gnaneshwaran ◽  
Sanjeev Kumar ◽  
Suman Choudhry

Optik ◽  
2015 ◽  
Vol 126 (24) ◽  
pp. 5710-5714 ◽  
Author(s):  
Munish Aggarwal ◽  
Shivani Vij ◽  
Niti Kant

2008 ◽  
Vol 17 (04) ◽  
pp. 387-394 ◽  
Author(s):  
XIUDONG SUN ◽  
XUECONG LI ◽  
JIANLONG ZHANG

Orientating manipulations of cylindrical particles were performed by optical tweezers. Vertical and horizontal manipulations of Escherichia coli (E. coli) were carried out by changing the trapping depth and the focused laser beam shape. It was found that carbon nanotubes bundles (CNTBs) could be rotated in the linear polarized optical trap until it orientated its long axis along the linear polarization direction of the laser beam. However, E.coli could not be orientated in this way. Corresponding mechanisms were discussed based on the anisomeric electric characters of CNTBs. These orientation technologies of cylindrical objects with optical trap have potential applications in assembling nano-electric devices.


Sign in / Sign up

Export Citation Format

Share Document