scholarly journals The Distinguishing Number and Distinguishing Chromatic Number for Posets

Order ◽  
2021 ◽  
Author(s):  
Karen L. Collins ◽  
Ann N. Trenk
10.37236/947 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Mark E. Watkins ◽  
Xiangqian Zhou

The distinguishing number $\Delta(X)$ of a graph $X$ is the least positive integer $n$ for which there exists a function $f:V(X)\to\{0,1,2,\cdots,n-1\}$ such that no nonidentity element of $\hbox{Aut}(X)$ fixes (setwise) every inverse image $f^{-1}(k)$, $k\in\{0,1,2,\cdots,n-1\}$. All infinite, locally finite trees without pendant vertices are shown to be 2-distinguishable. A proof is indicated that extends 2-distinguishability to locally countable trees without pendant vertices. It is shown that every infinite, locally finite tree $T$ with finite distinguishing number contains a finite subtree $J$ such that $\Delta(J)=\Delta(T)$. Analogous results are obtained for the distinguishing chromatic number, namely the least positive integer $n$ such that the function $f$ is also a proper vertex-coloring.


10.37236/1042 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Karen L. Collins ◽  
Ann N. Trenk

In this paper we define and study the distinguishing chromatic number, $\chi_D(G)$, of a graph $G$, building on the work of Albertson and Collins who studied the distinguishing number. We find $\chi_D(G)$ for various families of graphs and characterize those graphs with $\chi_D(G)$ $ = |V(G)|$, and those trees with the maximum chromatic distingushing number for trees. We prove analogs of Brooks' Theorem for both the distinguishing number and the distinguishing chromatic number, and for both trees and connected graphs. We conclude with some conjectures.


10.37236/6362 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Wilfried Imrich ◽  
Rafał Kalinowski ◽  
Monika Pilśniak ◽  
Mohammad Hadi Shekarriz

We consider infinite graphs. The distinguishing number $D(G)$ of a graph $G$ is the minimum number of colours in a vertex colouring of $G$ that is preserved only by the trivial automorphism. An analogous invariant for edge colourings is called the distinguishing index, denoted by $D'(G)$. We prove that $D'(G)\leq D(G)+1$. For proper colourings, we study relevant invariants called the distinguishing chromatic number $\chi_D(G)$, and the distinguishing chromatic index $\chi'_D(G)$, for vertex and edge colourings, respectively. We show that $\chi_D(G)\leq 2\Delta(G)-1$ for graphs with a finite maximum degree $\Delta(G)$, and we obtain substantially lower bounds for some classes of graphs with infinite motion. We also show that $\chi'_D(G)\leq \chi'(G)+1$, where $\chi'(G)$ is the chromatic index of $G$, and we prove a similar result $\chi''_D(G)\leq \chi''(G)+1$ for proper total colourings. A number of conjectures are formulated.


10.37236/537 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Thomas W. Tucker

The distinguishing number of a group $A$ acting faithfully on a set $X$, denoted $D(A,X)$, is the least number of colors needed to color the elements of $X$ so that no nonidentity element of $A$ preserves the coloring. Given a map $M$ (an embedding of a graph in a closed surface) with vertex set $V$ and without loops or multiples edges, let $D(M)=D({\rm Aut}(M),V)$, where ${\rm Aut(M)}$ is the automorphism group of $M$; if $M$ is orientable, define $D^+(M)$ similarly, using only orientation-preserving automorphisms. It is immediate that $D(M)\leq 4$ and $D^+(M)\leq 3$. We use Russell and Sundaram's Motion Lemma to show that there are only finitely many maps $M$ with $D(M)>2$. We show that if a group $A$ of automorphisms of a graph $G$ fixes no edges, then $D(A,V)=2$, with five exceptions. That result is used to find the four maps with $D^+(M)=3$. We also consider the distinguishing chromatic number $\chi_D(M)$, where adjacent vertices get different colors. We show $\chi_D(M)\leq \chi(M)+3$ with equality in only finitely many cases, where $\chi(M)$ is the chromatic number of the graph underlying $M$. We also show that $\chi_D(M)\leq 6$ for planar maps, answering a question of Collins and Trenk. Finally, we discuss the implications for general group actions and give numerous problems for further study.


Author(s):  
Albert William ◽  
Roy Santiago ◽  
Indra Rajasingh

Author(s):  
K. Rajalakshmi ◽  
M. Venkatachalam ◽  
M. Barani ◽  
D. Dafik

The packing chromatic number $\chi_\rho$ of a graph $G$ is the smallest integer $k$ for which there exists a mapping $\pi$ from $V(G)$ to $\{1,2,...,k\}$ such that any two vertices of color $i$ are at distance at least $i+1$. In this paper, the authors find the packing chromatic number of subdivision vertex join of cycle graph with path graph and subdivision edge join of cycle graph with path graph.


2021 ◽  
Vol 1836 (1) ◽  
pp. 012026
Author(s):  
M Y Rohmatulloh ◽  
Slamin ◽  
A I Kristiana ◽  
Dafik ◽  
R Alfarisi

Sign in / Sign up

Export Citation Format

Share Document