scholarly journals Distinguishability of Locally Finite Trees

10.37236/947 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Mark E. Watkins ◽  
Xiangqian Zhou

The distinguishing number $\Delta(X)$ of a graph $X$ is the least positive integer $n$ for which there exists a function $f:V(X)\to\{0,1,2,\cdots,n-1\}$ such that no nonidentity element of $\hbox{Aut}(X)$ fixes (setwise) every inverse image $f^{-1}(k)$, $k\in\{0,1,2,\cdots,n-1\}$. All infinite, locally finite trees without pendant vertices are shown to be 2-distinguishable. A proof is indicated that extends 2-distinguishability to locally countable trees without pendant vertices. It is shown that every infinite, locally finite tree $T$ with finite distinguishing number contains a finite subtree $J$ such that $\Delta(J)=\Delta(T)$. Analogous results are obtained for the distinguishing chromatic number, namely the least positive integer $n$ such that the function $f$ is also a proper vertex-coloring.

Author(s):  
Fairouz Beggas ◽  
Hamamache Kheddouci ◽  
Walid Marweni

In this paper, we introduce and study a new coloring problem of graphs called the double total dominator coloring. A double total dominator coloring of a graph [Formula: see text] with minimum degree at least 2 is a proper vertex coloring of [Formula: see text] such that each vertex has to dominate at least two color classes. The minimum number of colors among all double total dominator coloring of [Formula: see text] is called the double total dominator chromatic number, denoted by [Formula: see text]. Therefore, we establish the close relationship between the double total dominator chromatic number [Formula: see text] and the double total domination number [Formula: see text]. We prove the NP-completeness of the problem. We also examine the effects on [Formula: see text] when [Formula: see text] is modified by some operations. Finally, we discuss the [Formula: see text] number of square of trees by giving some bounds.


2012 ◽  
Vol 49 (2) ◽  
pp. 156-169 ◽  
Author(s):  
Marko Jakovac ◽  
Iztok Peterin

A b-coloring is a proper vertex coloring of a graph such that each color class contains a vertex that has a neighbor in all other color classes and the b-chromatic number is the largest integer φ(G) for which a graph has a b-coloring with φ(G) colors. We determine some upper and lower bounds for the b-chromatic number of the strong product G ⊠ H, the lexicographic product G[H] and the direct product G × H and give some exact values for products of paths, cycles, stars, and complete bipartite graphs. We also show that the b-chromatic number of Pn ⊠ H, Cn ⊠ H, Pn[H], Cn[H], and Km,n[H] can be determined for an arbitrary graph H, when integers m and n are large enough.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 393
Author(s):  
Franklin Thamil Selvi.M.S ◽  
Amutha A ◽  
Antony Mary A

Given a simple graph , a harmonious coloring of  is the proper vertex coloring such that each pair of colors seems to appears together on at most one edge. The harmonious chromatic number of , denoted by  is the minimal number of colors in a harmonious coloring of . In this paper we have determined the harmonious chromatic number of some classes of Circulant Networks.  


2018 ◽  
Vol 2 (1) ◽  
pp. 30 ◽  
Author(s):  
Nuris Hisan Nazula ◽  
S Slamin ◽  
D Dafik

The local antimagic labeling on a graph G with |V| vertices and |E| edges is defined to be an assignment f : E --&gt; {1, 2,..., |E|} so that the weights of any two adjacent vertices u and v are distinct, that is, w(u)̸  ̸= w(v) where w(u) = Σe∈<sub>E(u)</sub> f(e) and E(u) is the set of edges incident to u. Therefore, any local antimagic labeling induces a proper vertex coloring of G where the vertex u is assigned the color w(u). The local antimagic chromatic number, denoted by χla(G), is the minimum number of colors taken over all colorings induced by local antimagic labelings of G. In this paper, we present the local antimagic chromatic number of unicyclic graphs that is the graphs containing exactly one cycle such as kite and cycle with two neighbour pendants.


Author(s):  
S. Akbari ◽  
M. CHAVOOSHI ◽  
M. Ghanbari ◽  
S. Taghian

A proper vertex coloring of a graph [Formula: see text] is called a star coloring if every two color classes induce a forest whose each component is a star, which means there is no bicolored [Formula: see text] in [Formula: see text]. In this paper, we show that the Cartesian product of any two cycles, except [Formula: see text] and [Formula: see text], has a [Formula: see text]-star coloring.


2019 ◽  
Vol 39 (5) ◽  
pp. 623-643
Author(s):  
Ryan C. Bunge

Consider a tripartite graph to be any simple graph that admits a proper vertex coloring in at most 3 colors. Let \(G\) be a tripartite graph with \(n\) edges, one of which is a pendent edge. This paper introduces a labeling on such a graph \(G\) used to achieve 1-rotational \(G\)-decompositions of \(K_{2nt}\) for any positive integer \(t\). It is also shown that if \(G\) with a pendent edge is the result of adding an edge to a path on \(n\) vertices, then \(G\) admits such a labeling.


2018 ◽  
Vol 5 (2) ◽  
pp. 7-10
Author(s):  
Lavinya V ◽  
Vijayalakshmi D ◽  
Priyanka S

A Star coloring of an undirected graph G is a proper vertex coloring of G in which every path on four vertices contains at least three distinct colors. The Star chromatic number of an undirected graph Χs(G), denoted by(G) is the smallest integer k for which G admits a star coloring with k colors. In this paper, we obtain the exact value of the Star chromatic number of Middle graph of Tadpole graph, Snake graph, Ladder graph and Sunlet graphs denoted by M(Tm,n), M(Tn),M(Ln) and M(Sn) respectively.


1996 ◽  
Vol 5 (1) ◽  
pp. 15-28 ◽  
Author(s):  
Keith Edwards

A harmonious colouring of a simple graph G is a proper vertex colouring such that each pair of colours appears together on at most one edge. The harmonious chromatic number h(G) is the least number of colours in such a colouring. Let d be a fixed positive integer. We show that there is a natural number N(d) such that if T is any tree with m ≥ N(d) edges and maximum degree at most d, then the harmonious chromatic number h(T) is k or k + 1, where k is the least positive integer such that . We also give a polynomial time algorithm for determining the harmonious chromatic number of a tree with maximum degree at most d.


Author(s):  
Ulagammal Subramanian ◽  
Vernold Vivin Joseph

A star coloring of a graph G is a proper vertex coloring in which every path on four vertices in G is not bicolored. The star chromatic number χs (G) of G is the least number of colors needed to star color G. Let G = (V,E) be a graph with V = S1 [ S2 [ S3 [ . . . [ St [ T where each Si is a set of all vertices of the same degree with at least two elements and T =V (G) − St i=1 Si. The degree splitting graph DS (G) is obtained by adding vertices w1,w2, . . .wt and joining wi to each vertex of Si for 1 i t. The comb product between two graphs G and H, denoted by G ⊲ H, is a graph obtained by taking one copy of G and |V (G)| copies of H and grafting the ith copy of H at the vertex o to the ith vertex of G. In this paper, we give the exact value of star chromatic number of degree splitting of comb product of complete graph with complete graph, complete graph with path, complete graph with cycle, complete graph with star graph, cycle with complete graph, path with complete graph and cycle with path graph.


2013 ◽  
Vol Vol. 15 no. 1 (Graph Theory) ◽  
Author(s):  
Anja Kohl

Graph Theory International audience A b-coloring of a graph G by k colors is a proper vertex coloring such that each color class contains a color-dominating vertex, that is, a vertex having neighbors in all other k-1 color classes. The b-chromatic number χb(G) is the maximum integer k for which G has a b-coloring by k colors. Let Cnr be the rth power of a cycle of order n. In 2003, Effantin and Kheddouci established the b-chromatic number χb(Cnr) for all values of n and r, except for 2r+3≤n≤3r. For the missing cases they presented the lower bound L:= min n-r-1,r+1+⌊ n-r-1 / 3⌋ and conjectured that χb(Cnr)=L. In this paper, we determine the exact value on χb(Cnr) for the missing cases. It turns out that χb(Cnr)>L for 2r+3≤n≤2r+3+r-6 / 4.


Sign in / Sign up

Export Citation Format

Share Document