Impact of local forest composition on soil fungal communities in a mixed boreal forest

2018 ◽  
Vol 432 (1-2) ◽  
pp. 345-357 ◽  
Author(s):  
Mélissande Nagati ◽  
Mélanie Roy ◽  
Sophie Manzi ◽  
Franck Richard ◽  
Annie Desrochers ◽  
...  
2016 ◽  
Vol 28 (1) ◽  
pp. 57-68 ◽  
Author(s):  
Yan Boucher ◽  
Isabelle Auger ◽  
Jean Noël ◽  
Pierre Grondin ◽  
Dominique Arseneault

2007 ◽  
Vol 37 (7) ◽  
pp. 1214-1226 ◽  
Author(s):  
L.A. Venier ◽  
J.L. Pearce

We examined a landbird community and its relationship to environmental variables within the boreal forest in north–central Ontario to evaluate its potential usefulness as an indicator of sustainable forest management. Our study had two components. First, we compared bird assemblages in mature forest stands inside Pukaskwa National Park (n = 17) with similar forested stands in a logged landscape (n = 18) over 3 years. We found significant separation of sites in the two treatments based on an ANOSIM (analogue of the standard univariate one-way ANOVA test) of the bird communities (R = 0.238, p < 0.001). We identified four significant indicators of the park landscape (bay-breasted warbler ( Dendroica castanea (Wilson, 1810)), black-throated green warbler ( Dendroica virens (J.F. Gmelin, 1789)), ovenbird ( Seiurus aurocapillus (L., 1766)), and red-eyed vireo ( Vireo olivaceus (L., 1766))) and five indicators of the logged landscape (black-backed woodpecker ( Picoides arcticus (Swainson, 1832)), brown creeper ( Certhia americana Bonaparte, 1838), winter wren ( Troglodytes troglodytes (L., 1758)), white-throated sparrow ( Zonotrichia albicollis (J.F. Gmelin, 1789)), and yellow-bellied sapsucker ( Sphyrapicus varius (L., 1776))). Some relationships were attributable to differences in vegetation, whereas other differences were attributable to the landscape context. Second, we used generalized additive models to examine the relationship of individual species with four sets of environmental data (understorey floristics, forest structure, overstorey composition, and landscape context) using the 35 sites noted above and 18 additional mature forest sites in the logged landscape (n = 53). We found that all four types of variables were frequently included in the best model based on Akaike's information criterion (AIC) (structure in 23 models, landscape in 20 models, overstorey in 19 models, and understorey in 15 models). We discuss our results in terms of their implications to forest management and note that our ability to map habitat for forest birds is substantially compromised by the lack of good spatial estimates of environmental variables that describe bird habitat.


2001 ◽  
Vol 100 (2) ◽  
pp. 151-161 ◽  
Author(s):  
Anders Dahlberg ◽  
Johnny Schimmel ◽  
Andy F.S. Taylor ◽  
Hanna Johannesson

2017 ◽  
Vol 20 (12) ◽  
pp. 1546-1555 ◽  
Author(s):  
Julia Kyaschenko ◽  
Karina E. Clemmensen ◽  
Erik Karltun ◽  
Björn D. Lindahl

2012 ◽  
Vol 9 (9) ◽  
pp. 12087-12136 ◽  
Author(s):  
B. M. Rogers ◽  
J. T. Randerson ◽  
G. B. Bonan

Abstract. Fires in the boreal forests of North America are generally stand-replacing, killing the majority of trees and initiating succession that may last over a century. Functional variation during succession can affect local surface energy budgets and, potentially, regional climate. Burn area across Alaska and Canada has increased in the last few decades and is projected to be substantially higher by the end of the 21st century because of a warmer climate with longer growing seasons. Here we simulated the changes in forest composition due to altered burn area using a stochastic model of fire occurrence, historical fire data from national inventories, and succession trajectories derived from remote sensing. When coupled to an Earth system model, younger vegetation from increased burning cooled the high-latitude atmosphere, primarily in the winter and spring, with noticeable feedbacks from the ocean and sea ice. Results from multiple scenarios suggest that a doubling of burn area would result in surface cooling of 0.23 ± 0.09 °C and 0.43 ± 0.12 °C for winter–spring and February–April time periods, respectively. This could provide a negative feedback to high-latitude terrestrial warming during winter on the order of 4–6% for a doubling, and 14–23% for a quadrupling, of burn area. Further work is needed to integrate all the climate drivers from boreal forest fires, including aerosols and greenhouse gasses.


2008 ◽  
Vol 38 (7) ◽  
pp. 1911-1923 ◽  
Author(s):  
Thomas A. Kurkowski ◽  
Daniel H. Mann ◽  
T. Scott Rupp ◽  
David L. Verbyla

Postfire succession in the Alaskan boreal forest follows several different pathways, the most common being self-replacement and species-dominance relay. In self-replacement, canopy-dominant tree species replace themselves as the postfire dominants. It implies a relatively unchanging forest composition through time maintained by trees segregated within their respective, ecophysiological niches on an environmentally complex landscape. In contrast, species-dominance relay involves the simultaneous, postfire establishment of multiple tree species, followed by later shifts in canopy dominance. It implies that stand compositions vary with time since last fire. The relative frequencies of these and other successional pathways are poorly understood, despite their importance in determining the species mosaic of the present forest and their varying, potential responses to climate changes. Here we assess the relative frequencies of different successional pathways by modeling the relationship between stand type, solar insolation, and altitude; by describing how stand age relates to species composition; and by inferring successional trajectories from stand understories. Results suggest that >70% of the study forest is the product of self-replacement, and tree distributions are controlled mainly by the spatial distribution of solar insolation and altitude, not by time since last fire. As climate warms over the coming decades, deciduous trees will invade cold sites formerly dominated by black spruce, and increased fire frequency will make species-dominance relay even rarer.


2015 ◽  
Vol 207 (4) ◽  
pp. 1145-1158 ◽  
Author(s):  
Erica Sterkenburg ◽  
Adam Bahr ◽  
Mikael Brandström Durling ◽  
Karina E. Clemmensen ◽  
Björn D. Lindahl

Sign in / Sign up

Export Citation Format

Share Document