fungal communities
Recently Published Documents


TOTAL DOCUMENTS

2169
(FIVE YEARS 975)

H-INDEX

83
(FIVE YEARS 13)

2022 ◽  
Vol 56 ◽  
pp. 101135
Author(s):  
Adam N. Trautwig ◽  
Mark A. Anthony ◽  
Serita D. Frey ◽  
Kristina A. Stinson

Geoderma ◽  
2022 ◽  
Vol 409 ◽  
pp. 115598
Author(s):  
Yujia Luo ◽  
H. Pieter J. van Veelen ◽  
Siyu Chen ◽  
Valentina Sechi ◽  
Annemiek ter Heijne ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Pei Wang ◽  
Jianping Dai ◽  
Luyun Luo ◽  
Yong Liu ◽  
Decai Jin ◽  
...  

The variation of phyllosphere bacterial and fungal communities along elevation gradients may provide a potential link with temperature, which corresponds to an elevation over short geographic distances. At the same time, the plant growth stage is also an important factor affecting phyllosphere microorganisms. Understanding microbiological diversity over changes in elevation and among plant growth stages is important for developing crop growth ecological theories. Thus, we investigated variations in the composition of the rice phyllosphere bacterial and fungal communities at five sites along an elevation gradient from 580 to 980 m above sea level (asl) in the Ziquejie Mountain at the seedling, heading, and mature stages, using high-throughput Illumina sequencing methods. The results revealed that the dominant bacterial phyla were Proteobacteria, Actinobacteria, and Bacteroidetes, and the dominant fungal phyla were Ascomycota and Basidiomycota, which varied significantly at different elevation sites and growth stages. Elevation had a greater effect on the α diversity of phyllosphere bacteria than on that phyllosphere fungi. Meanwhile, the growth stage had a great effect on the α diversity of both phyllosphere bacteria and fungi. Our results also showed that the composition of bacterial and fungal communities varied significantly along elevation within the different growth stages, in terms of both changes in the relative abundance of species, and that the variations in bacterial and fungal composition were well correlated with variations in the average elevation. A total of 18 bacterial and 24 fungal genera were significantly correlated with elevational gradient, displaying large differences at the various growth stages. Soluble protein (SP) shared a strong positive correlation with bacterial and fungal communities (p < 0.05) and had a strong significant negative correlation with Serratia, Passalora, unclassified_Trichosphaeriales, and antioxidant enzymes (R > 0.5, p < 0.05), and significant positive correlation with the fungal genera Xylaria, Gibberella, and Penicillium (R > 0.5, p < 0.05). Therefore, it suggests that elevation and growth stage might alter both the diversity and abundance of phyllosphere bacterial and fungal populations.


Author(s):  
Youming Shen ◽  
Jianyi Zhang ◽  
Jiyun Nie ◽  
Hui Zhang ◽  
Syed Asim Shah Bacha

Abstract Microbes on fresh apples are closely associated with fruit disease, preservation and quality control. Investigation into the microbial communities on apples from different producing regions could reveal the microbial specificity and help disease prevention and quality control. In this paper, the apple surface microbes of forty-four samples from two main Chinese apple-producing regions, Bohai Bay (BHB) and the Loess Plateau (LP), were investigated by sequencing fungal internal transcribed spacer (ITS) and bacterial 16S rRNA hypervariable sequences. BHB and LP apples contained significantly different bacterial and fungal communities. BHB apples had a higher fungal diversity than LP apples. A total of 102 different fungal and bacterial taxonomies were obtained between apples from the two regions, in which 24 genera were predominant. BHB apples had higher phytopathogenic fungal genera, such as Tilletiopsis, Acremonium, Candida and Phoma, indicating the higher phytopathogenic risks of apples from the humid climate of the BHB region. LP apples contained more bacterial genera identified as gut microbes, indicating the potential risks of contaminating apples with foodborne pathogens in the arid environment of the LP. This study highlighted the environment-oriented microbial specificity on apples from two main apple-producing regions, and provided a basis for further investigation.


Sign in / Sign up

Export Citation Format

Share Document