Quantum algorithms for learning Walsh spectra of multi-output Boolean functions

2019 ◽  
Vol 18 (6) ◽  
Author(s):  
Jingyi Cui ◽  
Jiansheng Guo ◽  
Linhong Xu ◽  
Mingming Li
2015 ◽  
pp. 435-452
Author(s):  
Andris Ambainis ◽  
Jozef Gruska ◽  
Shenggen Zheng

It has been proved that almost all n-bit Boolean functions have exact classical query complexity n. However, the situation seemed to be very different when we deal with exact quantum query complexity. In this paper, we prove that almost all n-bit Boolean functions can be computed by an exact quantum algorithm with less than n queries. More exactly, we prove that ANDn is the only n-bit Boolean function, up to isomorphism, that requires n queries.


2015 ◽  
Vol 26 (05) ◽  
pp. 537-556 ◽  
Author(s):  
Xiwang Cao ◽  
Lei Hu

For cryptographic systems the method of confusion and diffusion is used as a fundamental technique to achieve security. Confusion is reflected in nonlinearity of certain Boolean functions describing the cryptographic transformation. In this paper, we present two Boolean functions which have low Walsh spectra and high nonlinearity. In the proof of the nonlinearity, a new method for evaluating some exponential sums over finite fields is provided.


2013 ◽  
Vol 23 (02) ◽  
pp. 386-398 ◽  
Author(s):  
DOMINIK FLOESS ◽  
ERIKA ANDERSSON ◽  
MARK HILLERY

2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Suman Dutta ◽  
Subhamoy Maitra ◽  
Chandra Sekhar Mukherjee

<p style='text-indent:20px;'>Here we revisit the quantum algorithms for obtaining Forrelation [Aaronson et al., 2015] values to evaluate some of the well-known cryptographically significant spectra of Boolean functions, namely the Walsh spectrum, the cross-correlation spectrum, and the autocorrelation spectrum. We introduce the existing 2-fold Forrelation formulation with bent duality-based promise problems as desirable instantiations. Next, we concentrate on the 3-fold version through two approaches. First, we judiciously set up some of the functions in 3-fold Forrelation so that given oracle access, one can sample from the Walsh Spectrum of <inline-formula><tex-math id="M1">\begin{document}$ f $\end{document}</tex-math></inline-formula>. Using this, we obtain improved results than what one can achieve by exploiting the Deutsch-Jozsa algorithm. In turn, it has implications in resiliency checking. Furthermore, we use a similar idea to obtain a technique in estimating the cross-correlation (and thus autocorrelation) value at any point, improving upon the existing algorithms. Finally, we tweak the quantum algorithm with the superposition of linear functions to obtain a cross-correlation sampling technique. This is the first cross-correlation sampling algorithm with constant query complexity to the best of our knowledge. This also provides a strategy to check if two functions are uncorrelated of degree <inline-formula><tex-math id="M2">\begin{document}$ m $\end{document}</tex-math></inline-formula>. We further modify this using Dicke states so that the time complexity reduces, particularly for constant values of <inline-formula><tex-math id="M3">\begin{document}$ m $\end{document}</tex-math></inline-formula>.</p>


2010 ◽  
Vol 26 ◽  
pp. 101-108 ◽  
Author(s):  
Dominik F. Floess ◽  
Erika Andersson ◽  
Mark Hillery

2017 ◽  
Vol 17 (7&8) ◽  
pp. 541-567
Author(s):  
Imdad S.B. Sardharwalla ◽  
Sergii Strelchuk ◽  
Richard Jozsa

We define and study a new type of quantum oracle, the quantum conditional oracle, which provides oracle access to the conditional probabilities associated with an underlying distribution. Amongst other properties, we (a) obtain highly efficient quantum algorithms for identity testing, equivalence testing and uniformity testing of probability distributions; (b) study the power of these oracles for testing properties of boolean functions, and obtain an algorithm for checking whether an n-input m-output boolean function is balanced or e-far from balanced; and (c) give an algorithm, requiring O˜(n/e) queries, for testing whether an n-dimensional quantum state is maximally mixed or not.


Sign in / Sign up

Export Citation Format

Share Document