Artificial neural networks and fuzzy time series forecasting: an application to air quality

2014 ◽  
Vol 49 (6) ◽  
pp. 2633-2647 ◽  
Author(s):  
Nur Haizum Abd Rahman ◽  
Muhammad Hisyam Lee ◽  
Suhartono ◽  
Mohd Talib Latif
2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Cem Kocak

Linear time series methods are researched under 3 topics, namely, AR (autoregressive), MA (moving averages), and ARMA (autoregressive moving averages) models. On the other hand, the univariate fuzzy time series forecasting methods proposed in the literature are based on fuzzy lagged (autoregressive (AR)) variables, having not used the error lagged (moving average (MA)) variables except for only two studies in the fuzzy time series literature. Not using MA variables could cause the model specification error in solutions of fuzzy time series. For this reason, this model specification error should be eliminated. In this study, a solution algorithm based on artificial neural networks has been proposed by defining a new high order fuzzy ARMA time series forecasting model that contains fuzzy MA variables along with fuzzy AR variables. It has been pointed out by the applications that the forecasting performance could have been increased by the proposed method in accordance with the fuzzy AR models in the literature since the proposed method is a high order model and also utilizes artificial neural networks to identify the fuzzy relation.


2006 ◽  
Vol 38 (2) ◽  
pp. 227-237 ◽  
Author(s):  
Luis Oliva Teles ◽  
Vitor Vasconcelos ◽  
Luis Oliva Teles ◽  
Elisa Pereira ◽  
Martin Saker ◽  
...  

2012 ◽  
Vol 518-523 ◽  
pp. 2969-2979 ◽  
Author(s):  
Ayari Samia ◽  
Nouira Kaouther ◽  
Trabelsi Abdelwahed

Forecasting air quality time series represents a very difficult task since air quality contains autoregressive, linear and nonlinear patterns. Autoregressive Integrated Moving Average (ARIMA) models have been widely used in air quality time series forecasting. However, they fail to detect extreme events because of their presumed linear form of data. Artificial Neural Networks (ANN) models have proved to be promising nonlinear tools for air quality forecasting. A hybrid model combining ARIMA and ANN improved forecasting more than either of the models used independently. Experimental results with meteorological and Particulate Matter data indicated that the combined model can be used as an efficient forecasting and early warning system for providing air quality information towards the citizen, not only in Sfax Southern Suburbs but in other Tunisian regions that suffer from poor air quality conditions.


Sign in / Sign up

Export Citation Format

Share Document