scholarly journals Homogeneous $q$-difference Equations and Generating Functions for the Generalized 2D-Hermite Polynomials

Author(s):  
Zeya Jia
2003 ◽  
Vol 2003 (57) ◽  
pp. 3633-3642 ◽  
Author(s):  
G. Dattoli ◽  
H. M. Srivastava ◽  
D. Sacchetti

We introduce new families of Hermite polynomials and of Bessel functions from a point of view involving the use of nonexponential generating functions. We study their relevant recurrence relations and show that they satisfy differential-difference equations which are isospectral to those of the ordinary case. We also indicate the usefulness of some of these new families.


Author(s):  
Kamal Gupta

In this paper, we obtain generating functions involving hyper geometric functions. Rodrigues type formula of Hermite polynomials which is closely related to generalized Hermite polynomials of Dattoli et. al. These results provide useful extensions of the well known results of classical Hermite polynomials Hn(x).


1980 ◽  
Vol 17 (01) ◽  
pp. 253-258 ◽  
Author(s):  
R. B. Nain ◽  
Kanwar Sen

For correlated random walks a method of transition probability matrices as an alternative to the much-used methods of probability generating functions and difference equations has been investigated in this paper. To illustrate the use of transition probability matrices for computing the various probabilities for correlated random walks, the transition probability matrices for restricted/unrestricted one-dimensional correlated random walk have been defined and used to obtain some of the probabilities.


Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 124 ◽  
Author(s):  
Nicolas Behr ◽  
Giuseppe Dattoli ◽  
Gérard Duchamp ◽  
Silvia Penson

Inspired by ideas from umbral calculus and based on the two types of integrals occurring in the defining equations for the gamma and the reciprocal gamma functions, respectively, we develop a multi-variate version of umbral calculus and of the so-called umbral image technique. Besides providing a class of new formulae for generalized hypergeometric functions and an implementation of series manipulations for computing lacunary generating functions, our main application of these techniques is the study of Sobolev-Jacobi polynomials. Motivated by applications to theoretical chemistry, we moreover present a deep link between generalized normal-ordering techniques introduced by Gurappa and Panigrahi, two-variable Hermite polynomials and our integral-based series transforms. Notably, we thus calculate all K-tuple L-shifted lacunary exponential generating functions for a certain family of Sobolev-Jacobi (SJ) polynomials explicitly.


Author(s):  
Feng Qi ◽  
Bai-Ni Guo

In the paper, the authors consider the generating functions of the Hermite polynomials and their squares, present explicit formulas for higher order derivatives of the generating functions of the Hermite polynomials and their squares, which can be viewed as ordinary differential equations or derivative polynomials, find differential equations that the generating functions of the Hermite polynomials and their squares satisfy, and derive explicit formulas and recurrence relations for the Hermite polynomials and their squares.


Sign in / Sign up

Export Citation Format

Share Document