Generating Functions, Z-Transforms, Laplace Transforms and the Solution of Linear Differential and Difference Equations

Author(s):  
Leonard C. Maximon
2019 ◽  
Vol 21 (9) ◽  
pp. 2751-2792
Author(s):  
Reinhard Schäfke ◽  
Michael Singer

Author(s):  
K. Sathiya Thiyagarajan ◽  
G. Ayyappan

In this chapter we discusses a batch arrival feedback retrial queue with Bernoulli vacation, where the server is subjected to starting failure. Any arriving batch finding the server busy, breakdown or on vacation enters an orbit. Otherwise one customer from the arriving batch enters a service immediately while the rest join the orbit. After the completion of each service, the server either goes for a vacation with probability or may wait for serving the next customer. Repair times, service times and vacation times are assumed to be arbitrarily distributed. The time dependent probability generating functions have been obtained in terms of their Laplace transforms. The steady state analysis and key performance measures of the system are also studied. Finally, some numerical illustrations are presented.


1980 ◽  
Vol 17 (01) ◽  
pp. 253-258 ◽  
Author(s):  
R. B. Nain ◽  
Kanwar Sen

For correlated random walks a method of transition probability matrices as an alternative to the much-used methods of probability generating functions and difference equations has been investigated in this paper. To illustrate the use of transition probability matrices for computing the various probabilities for correlated random walks, the transition probability matrices for restricted/unrestricted one-dimensional correlated random walk have been defined and used to obtain some of the probabilities.


Author(s):  
Michael Wibmer

Abstract We establish several finiteness properties of groups defined by algebraic difference equations. One of our main results is that a subgroup of the general linear group defined by possibly infinitely many algebraic difference equations in the matrix entries can indeed be defined by finitely many such equations. As an application, we show that the difference ideal of all difference algebraic relations among the solutions of a linear differential equation is finitely generated.


1989 ◽  
Vol 26 (02) ◽  
pp. 418-422 ◽  
Author(s):  
Francois Baccelli ◽  
William A. Massey

The exact solution for the transient distribution of the queue length and busy period of the M/M/1 queue in terms of modified Bessel functions has been proved in a variety of ways. Methods of the past range from spectral analysis (Lederman and Reuter (1954)), combinatorial arguments (Champernowne (1956)), to generating functions coupled with Laplace transforms (Clarke (1956)). In this paper, we present a novel approach that ties the computation of these transient distributions directly to the random sample path behavior of the M/M/1 queue. The use of Laplace transforms is minimized, and the use of generating functions is eliminated completely. This is a method that could prove to be useful in developing a similar transient analysis for queueing networks.


Sign in / Sign up

Export Citation Format

Share Document