scholarly journals The first moment of Maaß form symmetric square L-functions

Author(s):  
Olga Balkanova
2020 ◽  
Vol 8 ◽  
Author(s):  
Paul D. Nelson

Abstract We establish the first moment bound $$\begin{align*}\sum_{\varphi} L(\varphi \otimes \varphi \otimes \Psi, \tfrac{1}{2}) \ll_\varepsilon p^{5/4+\varepsilon} \end{align*}$$ for triple product L-functions, where $\Psi $ is a fixed Hecke–Maass form on $\operatorname {\mathrm {SL}}_2(\mathbb {Z})$ and $\varphi $ runs over the Hecke–Maass newforms on $\Gamma _0(p)$ of bounded eigenvalue. The proof is via the theta correspondence and analysis of periods of half-integral weight modular forms. This estimate is not expected to be optimal, but the exponent $5/4$ is the strongest obtained to date for a moment problem of this shape. We show that the expected upper bound follows if one assumes the Ramanujan conjecture in both the integral and half-integral weight cases. Under the triple product formula, our result may be understood as a strong level aspect form of quantum ergodicity: for a large prime p, all but very few Hecke–Maass newforms on $\Gamma _0(p) \backslash \mathbb {H}$ of bounded eigenvalue have very uniformly distributed mass after pushforward to $\operatorname {\mathrm {SL}}_2(\mathbb {Z}) \backslash \mathbb {H}$ . Our main result turns out to be closely related to estimates such as $$\begin{align*}\sum_{|n| < p} L(\Psi \otimes \chi_{n p},\tfrac{1}{2}) \ll p, \end{align*}$$ where the sum is over those n for which $n p$ is a fundamental discriminant and $\chi _{n p}$ denotes the corresponding quadratic character. Such estimates improve upon bounds of Duke–Iwaniec.


2019 ◽  
Vol 72 (4) ◽  
pp. 928-966
Author(s):  
Yujiao Jiang ◽  
Guangshi Lü

AbstractWe study the analogue of the Bombieri–Vinogradov theorem for $\operatorname{SL}_{m}(\mathbb{Z})$ Hecke–Maass form $F(z)$. In particular, for $\operatorname{SL}_{2}(\mathbb{Z})$ holomorphic or Maass Hecke eigenforms, symmetric-square lifts of holomorphic Hecke eigenforms on $\operatorname{SL}_{2}(\mathbb{Z})$, and $\operatorname{SL}_{3}(\mathbb{Z})$ Maass Hecke eigenforms under the Ramanujan conjecture, the levels of distribution are all equal to $1/2,$ which is as strong as the Bombieri–Vinogradov theorem. As an application, we study an automorphic version of Titchmarch’s divisor problem; namely for $a\neq 0,$$$\begin{eqnarray}\mathop{\sum }_{n\leqslant x}\unicode[STIX]{x1D6EC}(n)\unicode[STIX]{x1D70C}(n)d(n-a)\ll x\log \log x,\end{eqnarray}$$ where $\unicode[STIX]{x1D70C}(n)$ are Fourier coefficients $\unicode[STIX]{x1D706}_{f}(n)$ of a holomorphic Hecke eigenform $f$ for $\operatorname{SL}_{2}(\mathbb{Z})$ or Fourier coefficients $A_{F}(n,1)$ of its symmetric-square lift $F$. Further, as a consequence, we get an asymptotic formula $$\begin{eqnarray}\mathop{\sum }_{n\leqslant x}\unicode[STIX]{x1D6EC}(n)\unicode[STIX]{x1D706}_{f}^{2}(n)d(n-a)=E_{1}(a)x\log x+O(x\log \log x),\end{eqnarray}$$ where $E_{1}(a)$ is a constant depending on $a$. Moreover, we also consider the asymptotic orthogonality of the Möbius function against the arithmetic function $\unicode[STIX]{x1D70C}(n)d(n-a)$.


Author(s):  
Olga Balkanova ◽  
Dmitry Frolenkov

We prove a new upper bound on the second moment of Maass form symmetric square L-functions defined over Gaussian integers. Combining this estimate with the recent result of Balog–Biro–Cherubini–Laaksonen, we improve the error term in the prime geodesic theorem for the Picard manifold.


2007 ◽  
Vol 124 (2) ◽  
pp. 259-266 ◽  
Author(s):  
Rizwanur Khan

Author(s):  
E.M. Waddell ◽  
J.N. Chapman ◽  
R.P. Ferrier

Dekkers and de Lang (1977) have discussed a practical method of realising differential phase contrast in a STEM. The method involves taking the difference signal from two semi-circular detectors placed symmetrically about the optic axis and subtending the same angle (2α) at the specimen as that of the cone of illumination. Such a system, or an obvious generalisation of it, namely a quadrant detector, has the characteristic of responding to the gradient of the phase of the specimen transmittance. In this paper we shall compare the performance of this type of system with that of a first moment detector (Waddell et al.1977).For a first moment detector the response function R(k) is of the form R(k) = ck where c is a constant, k is a position vector in the detector plane and the vector nature of R(k)indicates that two signals are produced. This type of system would produce an image signal given bywhere the specimen transmittance is given by a (r) exp (iϕ (r), r is a position vector in object space, ro the position of the probe, ⊛ represents a convolution integral and it has been assumed that we have a coherent probe, with a complex disturbance of the form b(r-ro) exp (iζ (r-ro)). Thus the image signal for a pure phase object imaged in a STEM using a first moment detector is b2 ⊛ ▽ø. Note that this puts no restrictions on the magnitude of the variation of the phase function, but does assume an infinite detector.


Sign in / Sign up

Export Citation Format

Share Document