scholarly journals Another generalization of Euler’s arithmetic function and Menon’s identity

Author(s):  
László Tóth

AbstractWe define the k-dimensional generalized Euler function $$\varphi _k(n)$$ φ k ( n ) as the number of ordered k-tuples $$(a_1,\ldots ,a_k)\in {\mathbb {N}}^k$$ ( a 1 , … , a k ) ∈ N k such that $$1\le a_1,\ldots ,a_k\le n$$ 1 ≤ a 1 , … , a k ≤ n and both the product $$a_1\cdots a_k$$ a 1 ⋯ a k and the sum $$a_1+\cdots +a_k$$ a 1 + ⋯ + a k are prime to n. We investigate some of the properties of the function $$\varphi _k(n)$$ φ k ( n ) , and obtain a corresponding Menon-type identity.

2015 ◽  
Vol 58 (3) ◽  
pp. 548-560
Author(s):  
Guangshi Lü ◽  
Ayyadurai Sankaranarayanan

AbstractLet Sk(Γ) be the space of holomorphic cusp forms of even integral weight k for the full modular group SL(z, ℤ). Let be the n-th normalized Fourier coefficients of three distinct holomorphic primitive cusp forms , and h(z) ∊ Sk3 (Γ), respectively. In this paper we study the cancellations of sums related to arithmetic functions, such as twisted by the arithmetic function λf(n).


2020 ◽  
Author(s):  
Weiguang Mao ◽  
Maziyar Baran Pouyan ◽  
Dennis Kostka ◽  
Maria Chikina

AbstractMotivationSingle cell RNA sequencing (scRNA-seq) enables transcriptional profiling at the level of individual cells. With the emergence of high-throughput platforms datasets comprising tens of thousands or more cells have become routine, and the technology is having an impact across a wide range of biomedical subject areas. However, scRNA-seq data are high-dimensional and affected by noise, so that scalable and robust computational techniques are needed for meaningful analysis, visualization and interpretation. Specifically, a range of matrix factorization techniques have been employed to aid scRNA-seq data analysis. In this context we note that sources contributing to biological variability between cells can be discrete (or multi-modal, for instance cell-types), or continuous (e.g. pathway activity). However, no current matrix factorization approach is set up to jointly infer such mixed sources of variability.ResultsTo address this shortcoming, we present a new probabilistic single-cell factor analysis model, Non-negative Independent Factor Analysis (NIFA), that combines features of complementary approaches like Independent Component Analysis (ICA), Principal Component Analysis (PCA), and Non-negative Matrix Factorization (NMF). NIFA simultaneously models uni- and multi-modal latent factors and can so isolate discrete cell-type identity and continuous pathway-level variations into separate components. Similar to NMF, NIFA constrains factor loadings to be non-negative in order to increase biological interpretability. We apply our approach to a range of data sets where cell-type identity is known, and we show that NIFA-derived factors outperform results from ICA, PCA and NMF in terms of cell-type identification and biological interpretability. Studying an immunotherapy dataset in detail, we show that NIFA identifies biomedically meaningful sources of variation, derive an improved expression signature for regulatory T-cells, and identify a novel myeloid cell subtype associated with treatment response. Overall, NIFA is a general approach advancing scRNA-seq analysis capabilities and it allows researchers to better take advantage of their data. NIFA is available at https://github.com/wgmao/[email protected]


2014 ◽  
Vol 163 (3) ◽  
pp. 199-201 ◽  
Author(s):  
R. Balasubramanian ◽  
Florian Luca ◽  
Dimbinaina Ralaivaosaona
Keyword(s):  

1966 ◽  
Vol 9 (4) ◽  
pp. 457-462
Author(s):  
S. L. Segal

In [3] Rubel proved that if h(n) is an arithmetic function such that , L finite, then where μ(n) is the Mobius function. This result was extended to functions other than μ(n) in [4]; however, (as first pointed out to the author by Benjamin Volk), the order condition imposed there is unnecessary; in fact, utilizing the result of [3], the following slightly more general theorem has an almost trivial proof.


1967 ◽  
Vol 10 (5) ◽  
pp. 749-750
Author(s):  
S. L. Segal

Recently Gioia and Subbarao [2] studied essentially the following problem: If g(n) is an arithmetic function, and , then what is the behaviour of H(a, n) defined for each fixed integer a ≥ 2 by1By using Vaidyanathaswamy′s formula [e.g., 1], they obtain an explicit formula for H(a, n) in case g(n) is positive and completely multiplicative (Formula 2.2 of [2]). However, Vaidyanathaswamy′s formula is unnecessary to the proof of this result, which indeed follows more simply without its use, by exploiting a simple idea used earlier by Subbarao [3] (referred to also in the course of [2]).


Sign in / Sign up

Export Citation Format

Share Document