Heat-Resistant Corundum Concrete Reinforced with Aluminum Oxide Fibers Synthesized Within a Matrix During Firing. Part 2. Theoretical Prerequisites for Improving Refractory Concrete Heat Resistance Reinforced with Fine Fibers1

2014 ◽  
Vol 55 (3) ◽  
pp. 227-230
Author(s):  
V. N. Sokov ◽  
V. V. Sokov
2013 ◽  
Vol 800 ◽  
pp. 341-344
Author(s):  
Lin Chun Zhang

In this paper, we choose heat resistant material wollastonite and corundum to get the concrete which has heat resistance up to 600 centigrade. SEM reveals that at the temperature of 400 centigrade and 600 centigrade, the material is very dense. But when the temperature gets 800 centigrade and 1000 centigrade, the SEM reveals cracks. The refractory concrete made by magnesium potassium phosphate as the binder and wollastonite and corundum as aggregate has short setting time, early strength and rapid hardening. And it is suitable for emergency repair materials for the kiln.


2021 ◽  
Vol 9 (3) ◽  
pp. 667
Author(s):  
Zhiwei Tu ◽  
Peter Setlow ◽  
Stanley Brul ◽  
Gertjan Kramer

Bacterial endospores (spores) are among the most resistant living forms on earth. Spores of Bacillus subtilis A163 show extremely high resistance to wet heat compared to spores of laboratory strains. In this study, we found that spores of B. subtilis A163 were indeed very wet heat resistant and released dipicolinic acid (DPA) very slowly during heat treatment. We also determined the proteome of vegetative cells and spores of B. subtilis A163 and the differences in these proteomes from those of the laboratory strain PY79, spores of which are much less heat resistant. This proteomic characterization identified 2011 proteins in spores and 1901 proteins in vegetative cells of B. subtilis A163. Surprisingly, spore morphogenic protein SpoVM had no homologs in B. subtilis A163. Comparing protein expression between these two strains uncovered 108 proteins that were differentially present in spores and 93 proteins differentially present in cells. In addition, five of the seven proteins on an operon in strain A163, which is thought to be primarily responsible for this strain’s spores high heat resistance, were also identified. These findings reveal proteomic differences of the two strains exhibiting different resistance to heat and form a basis for further mechanistic analysis of the high heat resistance of B. subtilis A163 spores.


Sign in / Sign up

Export Citation Format

Share Document