dipicolinic acid
Recently Published Documents


TOTAL DOCUMENTS

588
(FIVE YEARS 92)

H-INDEX

56
(FIVE YEARS 7)

Author(s):  
Wen Jie Wu ◽  
Jinhui Chang

AbstractThe effect of oxygen on the germination and culturability of aerobic Bacillus atrophaeus spores was investigated in this study. Under oxic or anoxic conditions, various nutritional and non-nutritional germinants were utilized to induce germination. Tb3+-dipicolinic acid fluorescence assay and phase-contrast microscopy were used to track the germination process. The final germination level, germination half time, and germination speed were used to define germination kinetics. Colony-forming unit enumeration was used to assess the culturability of germinated spores germinated with or without oxygen. The results show that in the absence of oxygen, the final germination level was unaffected, germination half time decreased by up to 35.0%, germination speed increased by up to 27.4%, and culturability decreased by up to 95.1%. It is suggested that oxygen affects some germinant receptor-dependent germination pathways, implying that biomolecules engaged in these pathways may be oxygen-sensitive. Furthermore, spores that have completed the germination process in either anoxic or oxic conditions may have different culturability. This research contributed to a better understanding of the fundamental mechanism of germination.


2022 ◽  
Vol 1247 ◽  
pp. 131327
Author(s):  
Alireza Aliabadi ◽  
Mina Zangeneh ◽  
Zhila Izadi ◽  
Mohammad Badzohre ◽  
Mohammad Ghadermazi ◽  
...  

Author(s):  
Dmitry Malyshev ◽  
Rasmus Öberg ◽  
Lars Landström ◽  
Per Ola Andersson ◽  
Tobias Dahlberg ◽  
...  

2022 ◽  
Author(s):  
Jinyan Li ◽  
Qingyang Gu ◽  
Hui Heng ◽  
Ziwei Wang ◽  
Haibo Jin ◽  
...  

A novel ratiometric luminescence nanoprobe based on layered terbium hydroxide nanosheets can selectively detect dipicolinic acid, which is an anthrax biomarker.


2021 ◽  
Author(s):  
Fatemeh Hassani ◽  
Mahboubeh A. Sharif ◽  
Masoumeh Tabatabaee ◽  
Mahboobeh Mahmoodi

Abstract Complexes of Co (II) and Ni (II) with dipicolinic acid, 2,6-pyridine dicarboxylic acid (PydcH2) have been synthesized in the NaX (zeolite-X) nanopores. The formation of zeolite X encapsulated Co(II) and Ni(II) complexes ([M(pydcH)2]-NaX, where M = Co(II) and Ni(II]) were confirmed using spectroscopic methods of FT-IR, elemental analysis, XRD, FE-SEM, and TEM. It was affirmed that the encapsulation of complexes in NaX pores was performed without changes in the structure and shape of the zeolite. The oxidative degradation reaction of atenolol with hydrogen peroxide as an oxidant was performed in the presence of synthesized [M(pydcH)2]-NaX nanocomposites to study their catalytic activity. Therefore, oxidation of atenolol was performed under different conditions of catalyst, temperature, and time. Under optimal conditions, catalysts [Co(pydcH)2]-NaX and [Ni(pydcH)2]-NaX showed 82.3% and 71.1% activity of atenolol oxidation, respectively. These catalysts were stable after recovery and were used three more times. The results showed that these catalysts were reusable and had a reduction in the catalytic activity of less than ten percent.


Author(s):  
Alessia I. Delbrück ◽  
Yvette Tritten ◽  
Paolo Nanni ◽  
Rosa Heydenreich ◽  
Alexander Mathys

Resistant bacterial spores are a major concern in industrial decontamination processes. An approach known as pressure-mediated germination-inactivation strategy aims to artificially germinate spores by pressure to mitigate their resistance to inactivation processes. The successful implementation of such a germination-inactivation strategy relies on the germination of all spores. However, germination is heterogeneous, with some ‘superdormant’ spores germinating extremely slowly or not at all. The present study investigated potential underlying reasons for moderate high-pressure (150 MPa, 37°C) superdormancy of Bacillus subtilis spores. The water and dipicolinic acid content of superdormant spores was compared to that of the initial dormant spore population. The results suggest that water and dipicolinic acid content are not major drivers of moderate high-pressure superdormancy. Proteomic analysis was used to identify proteins that were quantified at significantly different levels in superdormant spores. Subsequent validation of the germination capacity of deletion mutants revealed that the presence of protein YhcN is required for efficient moderate high-pressure germination and that proteins MinC, cse60, and SspK may also play a role, albeit a minor one. Importance Spore-forming bacteria are ubiquitous in nature, and as a consequence, inevitably enter the food chain or other processing environments. Their presence can lead to significant spoilage or safety related issues. Intensive treatment is usually required to inactivate them; however, this harms important quality attributes. A pressure-mediated germination-inactivation approach can balance the need for effective spore inactivation and retention of sensitive ingredients. However, superdormant spores are the bottleneck preventing the successful and safe implementation of such a strategy. In-depth understanding of moderate high-pressure germination and the underlying causes of superdormancy is necessary to advance the development of mild high pressure-based spore control technologies. The approach used in this work allowed the identification of proteins that have not yet been associated to reduced germination at moderate high-pressure. This research paves the way for further studies on the germination and superdormancy mechanisms in spores, assisting the development of mild spore inactivation strategies.


Author(s):  
Dennis Nurjadi ◽  
Kaan Kocer ◽  
Quan Chanthalangsy ◽  
Sabrina Klein ◽  
Klaus Heeg ◽  
...  

Cefiderocol is a promising novel siderophore cephalosporin for the treatment of multi-drug resistant Gram-negative bacilli and with stability against degradation by metallo-β-lactamases. Nonetheless, the emergence of cefiderocol in metallo-β-lactamase-producing Enterobacterales during therapy has been reported on more than one occasion. To understand the underlying mechanisms and factors facilitating the resistance development, we conducted an in vitro evolution experiment using clinical E. cloacae isolates via serial passaging under cefiderocol pressure. In this study, we show that the presence of the New-Delhi metallo-β-lactamase (NDM) facilitates the emergence of resistance via non-synonymous mutations of the CirA catecholate siderophore receptor. Inhibition of metallo-β-lactamase activity using dipicolinic acid prevented the emergence of cefiderocol-resistant mutants successfully. This finding implies that caution should be taken, when using cefiderocol for the treatment of infections caused by metallo-β-lactamase- producing bacteria.


Author(s):  
Rena Shi ◽  
Hooisweng Ow ◽  
Gawain M. Thomas ◽  
Sehoon Chang ◽  
Hsieh Chen ◽  
...  

Author(s):  
Bhuvanesh Eswaraswamy ◽  
Priyabrata Mandal ◽  
Priya Goel ◽  
Sujay Chattopadhyay

2021 ◽  
Vol 165 ◽  
pp. 105312
Author(s):  
Yang Mu ◽  
Fuyin Zhang ◽  
Ning Li ◽  
Shanshan Pi ◽  
Ang Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document