Mass loss of the Greenland ice sheet from GRACE time-variable gravity measurements

2011 ◽  
Vol 56 (1) ◽  
pp. 197-214 ◽  
Author(s):  
Gholamreza Joodaki ◽  
Hossein Nahavandchi
Author(s):  
Enrico Ciracì ◽  
Isabella Velicogna ◽  
Tyler Clark Sutterley

We examine the mass balance of the glaciers in the Novaya Zemlya Archipelago, located in the Russian High Arctic using time series of time-variable gravity from the NASA/DLR Gravity Recovery and Climate Experiment (GRACE) mission, laser altimetry data from the NASA Ice Cloud and land Elevation Satellite (ICESat) mission, and radar altimetry data from the ESA CryoSat-2 mission. We present a new algorithm for detecting changes in glacier elevation from these satellite altimetry data and evaluate its performance in the case Novaya Zemlya by comparing the results with GRACE. We find that the mass loss of Novaya Zemlya increased from 10±5 Gt/yr over 2003-2009 to 14±4 Gt/yr over 2010-2016, with a brief period of near mass balance between 2009 and 2011. The results are consistent across the gravimetric and altimetric methods. Furthermore, the analysis of elevation change from CryoSat-2 indicates that 60\% of the mass loss occurs at low elevation, where thinning rates are highest. We also find that marine-terminating glaciers in Novaya Zemlya are thinning significantly faster than land-terminating glaciers, which indicates an important role of ice dynamics of marine-terminating glaciers. We posit that the glacier changes have been caused by changes in atmospheric and ocean temperatures. We find that the increase in mass loss after 2010 is associated with a warming in air temperatures, which increased the surface melt rates. There is no enough information on the ocean temperature at the front of the glaciers to conclude on the role of the ocean, but we posit that the temperature of subsurface ocean waters must have increased during the observation period.


2014 ◽  
Vol 27 (2) ◽  
pp. 229-245 ◽  
Author(s):  
Jin Li ◽  
Jianli Chen ◽  
Zizhan Zhang

Author(s):  
Jianli Chen ◽  
Anny Cazenave ◽  
Christoph Dahle ◽  
William Llovel ◽  
Isabelle Panet ◽  
...  

AbstractTime-variable gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) missions have opened up a new avenue of opportunities for studying large-scale mass redistribution and transport in the Earth system. Over the past 19 years, GRACE/GRACE-FO time-variable gravity measurements have been widely used to study mass variations in different components of the Earth system, including the hydrosphere, ocean, cryosphere, and solid Earth, and significantly improved our understanding of long-term variability of the climate system. We carry out a comprehensive review of GRACE/GRACE-FO satellite gravimetry, time-variable gravity fields, data processing methods, and major applications in several different fields, including terrestrial water storage change, global ocean mass variation, ice sheets and glaciers mass balance, and deformation of the solid Earth. We discuss in detail several major challenges we need to face when using GRACE/GRACE-FO time-variable gravity measurements to study mass changes, and how we should address them. We also discuss the potential of satellite gravimetry in detecting gravitational changes that are believed to originate from the deep Earth. The extended record of GRACE/GRACE-FO gravity series, with expected continuous improvements in the coming years, will lead to a broader range of applications and improve our understanding of both climate change and the Earth system.


2019 ◽  
Vol 11 (18) ◽  
pp. 2108 ◽  
Author(s):  
Tyler C. Sutterley ◽  
Isabella Velicogna

Geocenter variations relate the motion of the Earth’s center of mass with respect to its center of figure, and represent global-scale redistributions of the Earth’s mass. We investigate different techniques for estimating of geocenter motion from combinations of time-variable gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On missions, and bottom pressure outputs from ocean models. Here, we provide self-consistent estimates of geocenter variability incorporating the effects of self-attraction and loading, and investigate the effect of uncertainties in atmospheric and oceanic variation. The effects of self-attraction and loading from changes in land water storage and ice mass change affect both the seasonality and long-term trend in geocenter position. Omitting the redistribution of sea level affects the average annual amplitudes of the x, y, and z components by 0.2, 0.1, and 0.3 mm, respectively, and affects geocenter trend estimates by 0.02, 0.04 and 0.05 mm/yr for the the x, y, and z components, respectively. Geocenter estimates from the GRACE Follow-On mission are consistent with estimates from the original GRACE mission.


2014 ◽  
Vol 41 (22) ◽  
pp. 8130-8137 ◽  
Author(s):  
I. Velicogna ◽  
T. C. Sutterley ◽  
M. R. van den Broeke

Sign in / Sign up

Export Citation Format

Share Document