Cosmic Ray 11-Year Modulation for Sunspot Cycle 24

Solar Physics ◽  
2014 ◽  
Vol 290 (2) ◽  
pp. 635-643 ◽  
Author(s):  
H. S. Ahluwalia ◽  
R. C. Ygbuhay
Keyword(s):  
2011 ◽  
Vol 48 (1) ◽  
pp. 61-64 ◽  
Author(s):  
H.S. Ahluwalia ◽  
R.C. Ygbuhay

Solar Physics ◽  
2009 ◽  
Vol 260 (1) ◽  
pp. 225-232 ◽  
Author(s):  
Nipa J. Bhatt ◽  
Rajmal Jain ◽  
Malini Aggarwal

2010 ◽  
Author(s):  
H. S. Ahluwalia ◽  
R. C. Ygbuhay ◽  
M. Maksimovic ◽  
K. Issautier ◽  
N. Meyer-Vernet ◽  
...  
Keyword(s):  

2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Meena Pokharia ◽  
Lalan Prasad

The aim of this paper is to investigate the association of the variation of very slow speed solar wind streams (VSSSWS) with the cosmic ray intensity (CRI) and Ae index for solar cycle 24 (2008-2013). A Chree analysis by the superposed epoch method has been done in the study. The results of the present analysis showed that VSSSWS are not able to produce decreases in CRI. The prime source of the variation in magnetic activity near aurora zone is the wind interaction with the magnetosphere, but the speed of VSSSWS is low enough to produce any significant impact on aurora zone magnetic activity.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Meena Pokharia ◽  
Lalan Prasad

The aim of this paper is to investigate the association of the variation of very slow speed solar wind streams (VSSSWS) with the cosmic ray intensity (CRI) and Ae index for solar cycle 24 (2008-2013). A Chree analysis by the superposed epoch method has been done in the study. The results of the present analysis showed that VSSSWS are not able to produce decreases in CRI. The prime source of the variation in magnetic activity near aurora zone is the wind interaction with the magnetosphere, but the speed of VSSSWS is low enough to produce any significant impact on aurora zone magnetic activity


2020 ◽  
Vol 38 (6) ◽  
pp. 1237-1245
Author(s):  
Zhanle Du

Abstract. Predicting the maximum intensity of geomagnetic activity for an upcoming solar cycle is important in space weather service and for planning future space missions. This study analyzed the highest and lowest 3-hourly aa index (aaH∕aaL) in a 3 d interval, smoothed by 363 d to analyze their variation with the 11-year solar cycle. It is found that the maximum of aaH (aaHmax) is well correlated with the preceding minimum of either aaH (aaHmin, r=0.85) or aaL (aaLmin, r=0.89) for the solar cycle. Based on these relationships, the intensity of aaHmax for solar cycle 25 is estimated to be aaHmax(25)=83.7±6.9 (nT), about 29 % stronger than that of solar cycle 24. This value is equivalent to the ap index of apmax(25)=47.4±4.4 (nT) if employing the high correlation between ap and aa (r=0.93). The maximum of aaL (aaLmax) is also well correlated with the preceding aaHmin (r=0.80). The maximum amplitude of the sunspot cycle (Rm) is much better correlated with high geomagnetic activity (aaHmax, r=0.79) than with low geomagnetic activity (aaLmax, r=0.37). The rise time from aaHmin to aaHmax is weakly anti-correlated to the following aaHmax (r=-0.42). Similar correlations are also found for the 13-month smoothed monthly mean aa index. These results are expected to be useful in understanding the geomagnetic activity intensity of solar cycle 25.


Sign in / Sign up

Export Citation Format

Share Document