scholarly journals Statistical Analysis and Catalog of Non-polar Coronal Holes Covering the SDO-Era Using CATCH

Solar Physics ◽  
2019 ◽  
Vol 294 (10) ◽  
Author(s):  
Stephan G. Heinemann ◽  
Manuela Temmer ◽  
Niko Heinemann ◽  
Karin Dissauer ◽  
Evangelia Samara ◽  
...  

Abstract Coronal holes are usually defined as dark structures seen in the extreme ultraviolet and X-ray spectrum which are generally associated with open magnetic fields. Deriving reliably the coronal hole boundary is of high interest, as its area, underlying magnetic field, and other properties give important hints as regards high speed solar wind acceleration processes and compression regions arriving at Earth. In this study we present a new threshold-based extraction method, which incorporates the intensity gradient along the coronal hole boundary, which is implemented as a user-friendly SSW-IDL GUI. The Collection of Analysis Tools for Coronal Holes (CATCH) enables the user to download data, perform guided coronal hole extraction and analyze the underlying photospheric magnetic field. We use CATCH to analyze non-polar coronal holes during the SDO-era, based on 193 Å filtergrams taken by the Atmospheric Imaging Assembly (AIA) and magnetograms taken by the Heliospheric and Magnetic Imager (HMI), both on board the Solar Dynamics Observatory (SDO). Between 2010 and 2019 we investigate 707 coronal holes that are located close to the central meridian. We find coronal holes distributed across latitudes of about ${\pm}\, 60^{\circ}$±60∘, for which we derive sizes between $1.6 \times 10^{9}$1.6×109 and $1.8 \times 10^{11}\mbox{ km}^{2}$1.8×1011 km2. The absolute value of the mean signed magnetic field strength tends towards an average of $2.9\pm 1.9$2.9±1.9 G. As far as the abundance and size of coronal holes is concerned, we find no distinct trend towards the northern or southern hemisphere. We find that variations in local and global conditions may significantly change the threshold needed for reliable coronal hole extraction and thus, we can highlight the importance of individually assessing and extracting coronal holes.

2021 ◽  
Author(s):  
Robert Jarolim ◽  
Astrid Veronig ◽  
Stefan Hofmeister ◽  
Stephan Heinemann ◽  
Manuela Temmer ◽  
...  

<p>Being the source region of fast solar wind streams, coronal holes are one of the key components which impact space weather. The precise detection of the coronal hole boundary is an important criterion for forecasting and solar wind modeling, but also challenges our current understanding of the magnetic structure of the Sun. We use deep-learning to provide new methods for the detection of coronal holes, based on the multi-band EUV filtergrams and LOS magnetogram from the AIA and HMI instruments onboard the Solar Dynamics Observatory. The proposed neural network is capable to simultaneously identify full-disk correlations as well as small-scale structures and efficiently combines the multi-channel information into a single detection. From the comparison with an independent manually curated test set, the model provides a more stable extraction of coronal holes than the samples considered for training. Our method operates in real-time and provides reliable coronal hole extractions throughout the solar cycle, without any additional adjustments. We further investigate the importance of the individual channels and show that our neural network can identify coronal holes solely from magnetic field data.</p>


2020 ◽  
Author(s):  
Timofey Sagitov ◽  
Roman Kislov

<p>High speed streams originating from coronal holes are long-lived plasma structures that form corotating interaction regions (CIRs) or stream interface regions (SIRs) in the solar wind. The term CIR is used for streams existing for at least one solar rotation period, and the SIR stands for streams with a shorter lifetime. Since the plasma flows from coronal holes quasi-continuously, CIRs/SIRs simultaneously expand and rotate around the Sun, approximately following the Parker spiral shape up to the Earth’s orbit.</p><p>Coronal hole streams rotate not only around the Sun but also around their own axis of simmetry, resembling a screw. This effect may occur because of the following mechanisms: (1) the existence of a difference between the solar wind speed at different sides of the stream, (2) twisting of the magnetic field frozen into the plasma, and  (3) a vortex-like motion of the edge of the mothering coronal hole at the Sun. The screw type of the rotation of a CIR/SIR can lead to centrifugal instability if CIR/SIR inner layers have a larger angular velocity than the outer. Furthermore, the rotational plasma movement and the stream distortion can twist magnetic field lines. The latter contributes to the pinch effect in accordance with a well-known criterion of Suydam instability (Newcomb, 1960, doi: 10.1016/0003-4916(60)90023-3). Owing to the presence of a cylindrical current sheet at the boundary of a coronal hole, conditions for tearing instability can also appear at the CIR/SIR boundary. Regardless of their geometry, large scale current sheets are subject to various instabilities generating plasmoids. Altogether, these effects can lead to the formation of a turbulent region within CIRs/SIRs, making them filled with current sheets and plasmoids. </p><p>We study a substructure of CIRs/SIRs, characteristics of their rotation in the solar wind, and give qualitative estimations of possible mechanisms which lead to splitting of the leading edge a coronal hole flow and consequent formation of current sheets within CIRs/SIRs.</p>


2018 ◽  
Vol 8 ◽  
pp. A02 ◽  
Author(s):  
Tadhg M. Garton ◽  
Peter T. Gallagher ◽  
Sophie A. Murray

Coronal holes (CH) are regions of open magnetic fields that appear as dark areas in the solar corona due to their low density and temperature compared to the surrounding quiet corona. To date, accurate identification and segmentation of CHs has been a difficult task due to their comparable intensity to local quiet Sun regions. Current segmentation methods typically rely on the use of single Extreme Ultra-Violet passband and magnetogram images to extract CH information. Here, the coronal hole identification via multi-thermal emission recognition algorithm (CHIMERA) is described, which analyses multi-thermal images from the atmospheric image assembly (AIA) onboard the solar dynamics observatory (SDO) to segment coronal hole boundaries by their intensity ratio across three passbands (171 Å, 193 Å, and 211 Å). The algorithm allows accurate extraction of CH boundaries and many of their properties, such as area, position, latitudinal and longitudinal width, and magnetic polarity of segmented CHs. From these properties, a clear linear relationship was identified between the duration of geomagnetic storms and coronal hole areas. CHIMERA can therefore form the basis of more accurate forecasting of the start and duration of geomagnetic storms.


2018 ◽  
Vol 615 ◽  
pp. L9 ◽  
Author(s):  
L. P. Chitta ◽  
H. Peter ◽  
S. K. Solanki

Context. Magnetic energy is required to heat the corona, the outer atmosphere of the Sun, to millions of degrees. Aims. We study the nature of the magnetic energy source that is probably responsible for the brightening of coronal loops driven by nanoflares in the cores of solar active regions. Methods. We consider observations of two active regions (ARs), 11890 and 12234, in which nanoflares have been detected. To this end, we use ultraviolet (UV) and extreme ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) for coronal loop diagnostics. These images are combined with the co-temporal line-of-sight magnetic field maps from the Helioseismic and Magnetic Imager (HMI) onboard SDO to investigate the connection between coronal loops and their magnetic roots in the photosphere. Results. The core of these ARs exhibit loop brightening in multiple EUV channels of AIA, particularly in its 9.4 nm filter. The HMI magnetic field maps reveal the presence of a complex mixed polarity magnetic field distribution at the base of these loops. We detect the cancellation of photospheric magnetic flux at these locations at a rate of about 1015 Mx s−1. The associated compact coronal brightenings directly above the cancelling magnetic features are indicative of plasma heating due to chromospheric magnetic reconnection. Conclusions. We suggest that the complex magnetic topology and the evolution of magnetic field, such as flux cancellation in the photosphere and the resulting chromospheric reconnection, can play an important role in energizing active region coronal loops driven by nanoflares. Our estimate of magnetic energy release during flux cancellation in the quiet Sun suggests that chromospheric reconnection can also power the quiet corona.


Solar Physics ◽  
2019 ◽  
Vol 294 (9) ◽  
Author(s):  
Stephan G. Heinemann ◽  
Manuela Temmer ◽  
Charles J. Farrugia ◽  
Karin Dissauer ◽  
Christina Kay ◽  
...  

Abstract In a thorough study, we investigate the origin of a remarkable plasma and magnetic field configuration observed in situ on June 22, 2011, near L1, which appears to be a magnetic ejecta (ME) and a shock signature engulfed by a solar wind high-speed stream (HSS). We identify the signatures as an Earth-directed coronal mass ejection (CME), associated with a C7.7 flare on June 21, 2011, and its interaction with a HSS, which emanates from a coronal hole (CH) close to the launch site of the CME. The results indicate that the major interaction between the CME and the HSS starts at a height of $1.3~\mbox{R}_{\odot }$ 1.3 R ⊙ up to $3~\mbox{R}_{\odot }$ 3 R ⊙ . Over that distance range, the CME undergoes a strong north-eastward deflection of at least $30^{\circ }$ 30 ∘ due to the open magnetic field configuration of the CH. We perform a comprehensive analysis for the CME–HSS event using multi-viewpoint data (from the Solar TErrestrial RElations Observatories, the Solar and Heliospheric Observatory and the Solar Dynamics Observatory), and combined modeling efforts (nonlinear force-free field modeling, Graduated Cylindrical Shell CME modeling, and the Forecasting a CME’s Altered Trajectory – ForeCAT model). We aim at better understanding its early evolution and interaction process as well as its interplanetary propagation and related in situ signatures, and finally the resulting impact on the Earth’s magnetosphere.


2020 ◽  
Vol 643 ◽  
pp. A19
Author(s):  
Maria S. Madjarska ◽  
Klaus Galsgaard ◽  
Duncan H. Mackay ◽  
Kostadinka Koleva ◽  
Momchil Dechev

Context. We report on the third part of a series of studies on eruptions associated with small-scale loop complexes named coronal bright points (CBPs). Aims. A single case study of a CBP in an equatorial coronal hole with an exceptionally large size is investigated to expand on our understanding of the formation of mini-filaments, their destabilisation, and the origin of the eruption triggering the formation of jet-like features recorded in extreme ultraviolet (EUV) and X-ray emission. We aim to explore the nature of the so-called micro-flares in CBPs associated with jets in coronal holes and mini coronal mass ejections in the quiet Sun. Methods. Co-observations from the Atmospheric Imaging Assembly (AIA) and Helioseismic Magnetic Imager (HMI) on board the Solar Dynamics Observatory as well as GONG Hα images are used together with a non-linear force free field (NLFFF) relaxation approach, where the latter is based on a time series of HMI line-of-sight magnetograms. Results. A mini-filament (MF) that formed beneath the CBP arcade about 3−4 h before the eruption is seen in the Hα and EUV AIA images to lift up and erupt triggering the formation of an X-ray jet. No significant photospheric magnetic flux concentration displacement (convergence) is observed and neither is magnetic flux cancellation between the two main magnetic polarities forming the CBP in the time period leading to MF lift-off. The CBP micro-flare is associated with three flare kernels that formed shortly after the MF lift-off. No observational signature is found for magnetic reconnection beneath the erupting MF. The applied NLFFF modelling successfully reproduces both the CBP loop complex as well as the magnetic flux rope that hosts the MF during the build-up to the eruption. Conclusions. The applied NLFFF modelling is able to clearly show that an initial potential field can be evolved into a non-potential magnetic field configuration that contains free magnetic energy in the region that observationally hosts the eruption. The comparison of the magnetic field structure shows that the magnetic NLFFF model contains many of the features that can explain the different observational signatures found in the evolution and eruption of the CBP. In the future, it may eventually indicate the location of destabilisation that results in the eruptions of flux ropes.


Solar Physics ◽  
2021 ◽  
Vol 296 (9) ◽  
Author(s):  
Stephan G. Heinemann ◽  
Manuela Temmer ◽  
Stefan J. Hofmeister ◽  
Aleksandar Stojakovic ◽  
Laurent Gizon ◽  
...  

AbstractGlobal magnetic field models use as input synoptic data, which usually show “aging effects” as the longitudinal $360^{\circ }$ 360 ∘ information is not obtained simultaneously. Especially during times of increased solar activity, the evolution of the magnetic field may yield large uncertainties. A significant source of uncertainty is the Sun’s magnetic field on the side of the Sun invisible to the observer. Various methods have been used to complete the picture: synoptic charts, flux-transport models, and far side helioseismology. In this study, we present a new method to estimate the far-side open flux within coronal holes using STEREO EUV observations. First, we correlate the structure of the photospheric magnetic field as observed with the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory (HMI/SDO) with features in the transition region. From the 304 Å intensity distribution, which we found to be specific to coronal holes, we derive an empirical estimate for the open flux. Then we use a large sample of 313 SDO coronal hole observations to verify this relation. Finally, we perform a cross-instrument calibration from SDO to STEREO data to enable the estimation of the open flux at solar longitudes not visible from Earth. We find that the properties of strong unipolar magnetic elements in the photosphere, which determine the coronal hole’s open flux, can be approximated by open fields in the transition region. We find that structures below a threshold of $78\%$ 78 % (STEREO) or $94\%$ 94 % (SDO) of the solar disk median intensity as seen in 304 Å filtergrams are reasonably well correlated with the mean magnetic flux density of coronal holes (cc$_{\mathrm{sp}} = 0.59$ = sp 0.59 ). Using the area covered by these structures ($A_{\mathrm{OF}}$ A OF ) and the area of the coronal hole ($A_{\mathrm{CH}}$ A CH ), we model the open magnetic flux of a coronal hole as $|\Phi _{\mathrm{CH}}| = 0.25 A_{\mathrm{CH}}~\mathrm{exp}(0.032 A_{\mathrm{OF}})$ | Φ CH | = 0.25 A CH exp ( 0.032 A OF ) with an estimated uncertainty of 40 to $60\%$ 60 % .


Solar Physics ◽  
2021 ◽  
Vol 296 (12) ◽  
Author(s):  
Peter R. Young ◽  
Nicholeen M. Viall ◽  
Michael S. Kirk ◽  
Emily I. Mason ◽  
Lakshmi Pradeep Chitta

AbstractThe Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) returns high-resolution images of the solar atmosphere in seven extreme ultraviolet (EUV) wavelength channels. The images are processed on the ground to remove intensity spikes arising from energetic particles hitting the instrument, and the despiked images are provided to the community. In this article, a three-hour series of images from the 171 Å channel obtained on 28 February 2017 was studied to investigate how often the despiking algorithm gave false positives caused by compact brightenings in the solar atmosphere. The latter were identified through spikes appearing in the same detector pixel for three consecutive frames. 1096 examples were found from the 900 image frames. These “three-spikes” were assigned to 126 dynamic solar features, and it is estimated that the three-spike method identifies 19% of the total number of features affected by despiking. For any ten-minute sequence of AIA 171 Å images there are around 37 solar features that have their intensity modified by despiking. The features are found in active regions, quiet Sun, and coronal holes and, in relation to solar surface area, there is a greater proportion within coronal holes. In 96% of the cases, the despiked structure is a compact brightening with a size of two arcsec or less, and the remaining 4% have narrow, elongated structures. By applying an EUV burst detection algorithm, we found that 96% of the events could be classified as EUV bursts. None of the spike events are rendered invisible by the AIA processing pipeline, but the total intensity over an event’s lifetime can be reduced by up to 67%. Users are recommended to always restore the original intensities in AIA data when studying short-lived or rapidly evolving features that exhibit fine-scale structure.


2007 ◽  
Vol 3 (S247) ◽  
pp. 123-132
Author(s):  
G. Verth

AbstractThe extreme-ultraviolet (EUV) imagers onboard the planned Solar Dynamics Observatory (SDO) and Solar Orbiter (SO) will offer us the best chance yet of using observations of post-flare loop oscillations to probe the fine structure of the corona. Recently developed magnetohydrodynamic (MHD) wave theory has shown that the properties of loop oscillations depend on their plasma fine structure. Up to this point, many studies have concentrated solely on the effect of plasma density stratification on coronal loop oscillations. In this paper we develop MHD wave theory which models the effect of an inhomogeneous magnetic field on coronal loop oscillations. The results have the potential to be used in testing the efficacy of photospheric magnetic field extrapolations and have important implications regarding magneto-seismology of the corona.


Author(s):  
Yang Liu ◽  
Kefei Song ◽  
Xiaodong Wang ◽  
Bo Chen ◽  
Junlin Ma ◽  
...  

In this paper, the combination of nonlinear gradient iteration and crossing method is presented in order to analyze high precision remote sensing images of solar magnetic field in extreme ultraviolet (EUV) wavelengths which are usually affected by solar magnetic evolution, satellite attitude changes and random satellite jitter, and to reduce structural complexity the complicated correlation tracker is normally adopted. Using crossing method which better approached the inefficiency by computing full-scale solar magnetic field images, nine point areas are uniformly selected in full-scale solar magnetic field images which solves the problem of low-computing efficiency. Meanwhile, nonlinear gradient iteration algorithm through numerical simulation experiments is adopted to analyze displacement of solar magnetic field images in EUV wavelengths, which reduces the errors due to the solar intensity changing and tiny deformation of solar magnetic field compared to traditional algorithms. The results clearly indicate that the precision of mean error field and square deviation field for deformed displacement are both less than 5% of pixel by solar magnetic field images of Solar Dynamics Observatory (SDO).


Sign in / Sign up

Export Citation Format

Share Document