scholarly journals Magnetic Fields in the Large-Scale Structure of the Universe

2011 ◽  
Vol 166 (1-4) ◽  
pp. 1-35 ◽  
Author(s):  
D. Ryu ◽  
D. R. G. Schleicher ◽  
R. A. Treumann ◽  
C. G. Tsagas ◽  
L. M. Widrow
Science ◽  
2008 ◽  
Vol 320 (5878) ◽  
pp. 909-912 ◽  
Author(s):  
D. Ryu ◽  
H. Kang ◽  
J. Cho ◽  
S. Das

2014 ◽  
Vol 10 (S313) ◽  
pp. 321-326
Author(s):  
M. Johnston-Hollitt ◽  
S. Dehghan ◽  
L. Pratley

AbstractBent-tailed (BT) radio sources have long been known to trace over densities in the Universe up to z ~ 1 and there is increasing evidence this association persists out to redshifts of 2. The morphology of the jets in BT galaxies is primarily a function of the environment that they have resided in and so BTs provide invaluable clues as to their local conditions. Thus, not only can samples of BT galaxies be used as signposts of large-scale structure, but are also valuable for obtaining a statistical measurement of properties of the intra-cluster medium including the presence of cluster accretion shocks & winds, and as historical anemometers, preserving the dynamical history of their surroundings in their jets. We discuss the use of BTs to unveil large-scale structure and provide an example in which a BT was used to unlock the dynamical history of its host cluster. In addition to their use as density and dynamical indicators, BTs are useful probes of the magnetic field on their environment on scales which are inaccessible to other methods. Here we discuss a novel way in which a particular sub-class of BTs, the so-called ‘corkscrew’ galaxies might further elucidate the coherence lengths of the magnetic fields in their vicinity. Given that BTs are estimated to make up a large population in next generation surveys we posit that the use of jets in this way could provide a unique source of environmental information for clusters and groups up to z = 2.


Galaxies ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 142 ◽  
Author(s):  
Valentina Vacca ◽  
Matteo Murgia ◽  
Federica Govoni ◽  
Torsten Enßlin ◽  
Niels Oppermann ◽  
...  

The formation and history of cosmic magnetism is still widely unknown. Significant progress can be made through the study of magnetic fields properties in the large-scale structure of the Universe: galaxy clusters, filaments, and voids of the cosmic web. A powerful tool to study magnetization of these environments is represented by radio observations of diffuse synchrotron sources and background or embedded radio galaxies. To draw a detailed picture of cosmic magnetism, high-quality data of these sources need to be used in conjunction with sophisticated tools of analysis.


Author(s):  
D. Ryu ◽  
D. R. G. Schleicher ◽  
R. A. Treumann ◽  
C. G. Tsagas ◽  
L. M. Widrow

2011 ◽  
Vol 54 (10) ◽  
pp. 983-1005 ◽  
Author(s):  
Vladimir N Lukash ◽  
Elena V Mikheeva ◽  
A M Malinovsky

Physics Today ◽  
1981 ◽  
Vol 34 (8) ◽  
pp. 62-63 ◽  
Author(s):  
P. J. E. Peebles ◽  
Simon D. M. White

2010 ◽  
Vol 2010 ◽  
pp. 1-19 ◽  
Author(s):  
Dai G. Yamazaki ◽  
Kiyotomo Ichiki ◽  
Toshitaka Kajino ◽  
Grant J. Mathews

Magnetic fields are everywhere in nature, and they play an important role in every astronomical environment which involves the formation of plasma and currents. It is natural therefore to suppose that magnetic fields could be present in the turbulent high-temperature environment of the big bang. Such a primordial magnetic field (PMF) would be expected to manifest itself in the cosmic microwave background (CMB) temperature and polarization anisotropies, and also in the formation of large-scale structure. In this paper, we summarize the theoretical framework which we have developed to calculate the PMF power spectrum to high precision. Using this formulation, we summarize calculations of the effects of a PMF which take accurate quantitative account of the time evolution of the cutoff scale. We review the constructed numerical program, which is without approximation, and an improvement over the approach used in a number of previous works for studying the effect of the PMF on the cosmological perturbations. We demonstrate how the PMF is an important cosmological physical process on small scales. We also summarize the current constraints on the PMF amplitudeBλand the power spectral indexnBwhich have been deduced from the available CMB observational data by using our computational framework.


Sign in / Sign up

Export Citation Format

Share Document