Δ-core Fuzzy Logics with Propositional Quantifiers, Quantifier Elimination and Uniform Craig Interpolation

Studia Logica ◽  
2012 ◽  
Vol 100 (1-2) ◽  
pp. 289-317 ◽  
Author(s):  
Franco Montagna
2021 ◽  
Vol 20 (3) ◽  
Author(s):  
Grzegorz Pastuszak ◽  
Adam Skowyrski ◽  
Andrzej Jamiołkowski

1991 ◽  
Vol 15 (3-4) ◽  
pp. 357-379
Author(s):  
Tien Huynh ◽  
Leo Joskowicz ◽  
Catherine Lassez ◽  
Jean-Louis Lassez

We address the problem of building intelligent systems to reason about linear arithmetic constraints. We develop, along the lines of Logic Programming, a unifying framework based on the concept of Parametric Queries and a quasi-dual generalization of the classical Linear Programming optimization problem. Variable (quantifier) elimination is the key underlying operation which provides an oracle to answer all queries and plays a role similar to Resolution in Logic Programming. We discuss three methods for variable elimination, compare their feasibility, and establish their applicability. We then address practical issues of solvability and canonical representation, as well as dynamical updates and feedback. In particular, we show how the quasi-dual formulation can be used to achieve the discriminating characteristics of the classical Fourier algorithm regarding solvability, detection of implicit equalities and, in case of unsolvability, the detection of minimal unsolvable subsets. We illustrate the relevance of our approach with examples from the domain of spatial reasoning and demonstrate its viability with empirical results from two practical applications: computation of canonical forms and convex hull construction.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1392 ◽  
Author(s):  
Iram Parvez ◽  
JianJian Shen ◽  
Mehran Khan ◽  
Chuntian Cheng

The hydro generation scheduling problem has a unit commitment sub-problem which deals with start-up/shut-down costs related hydropower units. Hydro power is the only renewable energy source for many countries, so there is a need to find better methods which give optimal hydro scheduling. In this paper, the different optimization techniques like lagrange relaxation, augmented lagrange relaxation, mixed integer programming methods, heuristic methods like genetic algorithm, fuzzy logics, nonlinear approach, stochastic programming and dynamic programming techniques are discussed. The lagrange relaxation approach deals with constraints of pumped storage hydro plants and gives efficient results. Dynamic programming handles simple constraints and it is easily adaptable but its major drawback is curse of dimensionality. However, the mixed integer nonlinear programming, mixed integer linear programming, sequential lagrange and non-linear approach deals with network constraints and head sensitive cascaded hydropower plants. The stochastic programming, fuzzy logics and simulated annealing is helpful in satisfying the ramping rate, spinning reserve and power balance constraints. Genetic algorithm has the ability to obtain the results in a short interval. Fuzzy logic never needs a mathematical formulation but it is very complex. Future work is also suggested.


2010 ◽  
Vol 180 (8) ◽  
pp. 1354-1372 ◽  
Author(s):  
Carles Noguera ◽  
Francesc Esteva ◽  
Lluís Godo

Sign in / Sign up

Export Citation Format

Share Document