Euler integral symmetries for a deformed Heun equation and symmetries of the Painlevé PVI equation

2008 ◽  
Vol 155 (2) ◽  
pp. 722-733 ◽  
Author(s):  
A. Ya. Kazakov ◽  
S. Yu. Slavyanov
2020 ◽  
Vol 75 (11) ◽  
pp. 937-962
Author(s):  
Heinz-Jürgen Schmidt

AbstractWe consider the solution of the equation of motion of a classical/quantum spin subject to a monochromatical, elliptically polarized external field. The classical Rabi problem can be reduced to third-order differential equations with polynomial coefficients and hence solved in terms of power series in close analogy to the confluent Heun equation occurring for linear polarization. Application of Floquet theory yields physically interesting quantities like the quasienergy as a function of the problem’s parameters and expressions for the Bloch–Siegert shift of resonance frequencies. Various limit cases are thoroughly investigated.


2006 ◽  
Vol 79 (1-2) ◽  
pp. 244-253 ◽  
Author(s):  
Yu. N. Sirota ◽  
A. O. Smirnov

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
T. A. Ishkhanyan ◽  
T. A. Shahverdyan ◽  
A. M. Ishkhanyan

We examine the expansions of the solutions of the general Heun equation in terms of the Gauss hypergeometric functions. We present several expansions using functions, the forms of which differ from those applied before. In general, the coefficients of the expansions obey three-term recurrence relations. However, there exist certain choices of the parameters for which the recurrence relations become two-term. The coefficients of the expansions are then explicitly expressed in terms of the gamma functions. Discussing the termination of the presented series, we show that the finite-sum solutions of the general Heun equation in terms of generally irreducible hypergeometric functions have a representation through a single generalized hypergeometric function. Consequently, the power-series expansion of the Heun function for any such case is governed by a two-term recurrence relation.


1969 ◽  
Vol 16 (4) ◽  
pp. 281-289 ◽  
Author(s):  
B. D. Sleeman

Some years ago Lambe and Ward (1) and Erdélyi (2) obtained integral equations for Heun polynomials and Heun functions. The integral equations discussed by these authors were of the formFurther, as is well known, the Heun equation includes, among its special cases, Lamé's equation and Mathieu's equation and so (1.1) may be considered a generalisation of the integral equations satisfied by Lamé polynomials and Mathieu functions. However, integral equations of the type (1.1) are not the only ones satisfied by Lamé polynomials; Arscott (3) discussed a class of non- linear integral equations associated with these functions. This paper then is concerned with discussing the existence of non-linear integral equations satisfied by solutions of Heun's equation.


Sign in / Sign up

Export Citation Format

Share Document