Modification of fibrin structure as a possible cause of thrombolytic resistance

2009 ◽  
Vol 29 (3) ◽  
pp. 296-298 ◽  
Author(s):  
Boguslaw Lipinski
2004 ◽  
Vol 146 (10) ◽  
pp. 461-469 ◽  
Author(s):  
S. Staebler ◽  
E. Buergi ◽  
B. Litzenberger ◽  
K. McCullough ◽  
I. McNair ◽  
...  

1975 ◽  
Vol 33 (03) ◽  
pp. 573-585 ◽  
Author(s):  
Masahiro Iwamoto

SummaryInteractions between tranexamic acid and protein were studied in respect of the antifibrinolytic actions of tranexamic acid. Tranexamic acid did neither show any interaction with fibrinogen or fibrin, nor was incorporated into cross-linked fibrin structure by the action of factor XIII. On the other hand, tranexamic acid bound to human plasmin with a dissociation constant of 3.5 × 10−5 M, which was very close to the inhibition constant (3.6 × 10−5 M) for this compound in inhibiting plasmin-induced fibrinolysis. The binding site of tranexamic acid on plasmin was not the catalytic site of plasmin, because TLCK-blocked plasmin also showed a similar affinity to tranexamic acid (the dissociation constant, 2.9–4.8 × 10−5 M).In the binding studies with the highly purified plasminogen and TLCK-plasmin preparations which were obtained by affinity chromatography on lysine-substituted Sepharose, the molar binding ratio was shown to be 1.5–1.6 moles tranexamic acid per one mole protein.On the basis of these and other findings, a model for the inhibitory mechanism of tranexamic acid is presented.


Genetics ◽  
2001 ◽  
Vol 159 (4) ◽  
pp. 1833-1844 ◽  
Author(s):  
Mikkel H Schierup ◽  
Anders M Mikkelsen ◽  
Jotun Hein

AbstractUsing a coalescent model of multiallelic balancing selection with recombination, the genealogical process as a function of recombinational distance from a site under selection is investigated. We find that the shape of the phylogenetic tree is independent of the distance to the site under selection. Only the timescale changes from the value predicted by Takahata's allelic genealogy at the site under selection, converging with increasing recombination to the timescale of the neutral coalescent. However, if nucleotide sequences are simulated over a recombining region containing a site under balancing selection, a phylogenetic tree constructed while ignoring such recombination is strongly affected. This is true even for small rates of recombination. Published studies of multiallelic balancing selection, i.e., the major histocompatibility complex (MHC) of vertebrates, gametophytic and sporophytic self-incompatibility of plants, and incompatibility of fungi, all observe allelic genealogies with unexpected shapes. We conclude that small absolute levels of recombination are compatible with these observed distortions of the shape of the allelic genealogy, suggesting a possible cause of these observations. Furthermore, we illustrate that the variance in the coalescent with recombination process makes it difficult to locate sites under selection and to estimate the selection coefficient from levels of variability.


Sign in / Sign up

Export Citation Format

Share Document