similar affinity
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 24)

H-INDEX

24
(FIVE YEARS 3)

2022 ◽  
Vol 23 (2) ◽  
pp. 710
Author(s):  
Gustavo D. Campagnaro ◽  
Hamza A. A. Elati ◽  
Sofia Balaska ◽  
Maria Esther Martin Abril ◽  
Manal J. Natto ◽  
...  

Toxoplasma gondii is unable to synthesize purines de novo, instead salvages them from its environment, inside the host cell, for which they need high affinity carriers. Here, we report the expression of a T. gondii Equilibrative Nucleoside Transporter, Tg244440, in a Trypanosoma brucei strain from which nucleobase transporters have been deleted. Tg244440 transported hypoxanthine and guanine with similar affinity (Km ~1 µM), while inosine and guanosine displayed Ki values of 4.05 and 3.30 µM, respectively. Low affinity was observed for adenosine, adenine, and pyrimidines, classifying Tg244440 as a high affinity oxopurine transporter. Purine analogues were used to probe the substrate-transporter binding interactions, culminating in quantitative models showing different binding modes for oxopurine bases, oxopurine nucleosides, and adenosine. Hypoxanthine and guanine interacted through protonated N1 and N9, and through unprotonated N3 and N7 of the purine ring, whereas inosine and guanosine mostly employed the ribose hydroxy groups for binding, in addition to N1H of the nucleobase. Conversely, the ribose moiety of adenosine barely made any contribution to binding. Tg244440 is the first gene identified to encode a high affinity oxopurine transporter in T. gondii and, to the best of our knowledge, the first purine transporter to employ different binding modes for nucleosides and nucleobases.


2021 ◽  
Author(s):  
Matthew Chan ◽  
Kui K Chan ◽  
Erik Procko ◽  
Diwakar Shukla

A potential therapeutic candidate for neutralizing SARS-CoV-2 infection is engineering high- affinity soluble ACE2 decoy proteins to compete for binding of the viral spike (S) protein. Previously, a deep mutational scan of ACE2 was performed and has led to the identification of a triple mutant ACE2 variant, named ACE22.v.2.4, that exhibits nanomolar affinity binding to the RBD domain of S. Using a recently developed transfer learning algorithm, TLmutation, we sought to identified other ACE2 variants, namely double mutants, that may exhibit similar binding affinity with decreased mutational load. Upon training a TLmutation model on the effects of single mutations, we identified several ACE2 double mutants that bind to RBD with tighter affinity as compared to the wild type, most notably, L79V;N90D that binds RBD with similar affinity to ACE22.v.2.4. The successful experimental validation of the double mutants demonstrated the use transfer and supervised learning approaches for engineering protein-protein interactions and identifying high affinity ACE2 peptides for targeting SARS-CoV-2.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Andrew M. King ◽  
Daniel A. Anderson ◽  
Emerson Glassey ◽  
Thomas H. Segall-Shapiro ◽  
Zhengan Zhang ◽  
...  

AbstractPeptide secondary metabolites are common in nature and have diverse pharmacologically-relevant functions, from antibiotics to cross-kingdom signaling. Here, we present a method to design large libraries of modified peptides in Escherichia coli and screen them in vivo to identify those that bind to a single target-of-interest. Constrained peptide scaffolds were produced using modified enzymes gleaned from microbial RiPP (ribosomally synthesized and post-translationally modified peptide) pathways and diversified to build large libraries. The binding of a RiPP to a protein target leads to the intein-catalyzed release of an RNA polymerase σ factor, which drives the expression of selectable markers. As a proof-of-concept, a selection was performed for binding to the SARS-CoV-2 Spike receptor binding domain. A 1625 Da constrained peptide (AMK-1057) was found that binds with similar affinity (990 ± 5 nM) as an ACE2-derived peptide. This demonstrates a generalizable method to identify constrained peptides that adhere to a single protein target, as a step towards “molecular glues” for therapeutics and diagnostics.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1533
Author(s):  
Giuliano Paglia ◽  
Lorenzo Antonini ◽  
Laura Cervoni ◽  
Rino Ragno ◽  
Manuela Sabatino ◽  
...  

In a previous work, it was shown that punicalagin, an active ingredient of pomegranate, is able to bind to PDIA3 and inhibit its disulfide reductase activity. Here we provide evidence that punicalagin can also bind to PDIA1, the main expressed form of protein disulfide isomerase (PDI). In this comparative study, the affinity and the effect of punicalagin binding on each protein were evaluated, and a computational approach was used to identify putative binding sites. Punicalagin binds to either PDIA1 or PDIA3 with a similar affinity, but the inhibition efficacy on protein reductase activity is higher for PDIA3. Additionally, punicalagin differently affects the thermal denaturation profile of both proteins. Molecular docking and molecular dynamics simulations led to propose a punicalagin binding mode on PDIA1 and PDIA3, identifying the binding sites at the redox domains a’ in two different pockets, suggesting different effects of punicalagin on proteins’ structure. This study provides insights to develop punicalagin-based ligands, to set up a rational design for PDIA3 selective inhibitors, and to dissect the molecular determinant to modulate the protein activity.


2021 ◽  
Vol 22 (15) ◽  
pp. 7871
Author(s):  
Taner Duysak ◽  
Thanh Tuyen Tran ◽  
Aqeel Rana Afzal ◽  
Che-Hun Jung

The cyclic AMP receptor protein (CRP) is one of the best-known transcription factors, regulating about 400 genes. The histone-like nucleoid structuring protein (H-NS) is one of the nucleoid-forming proteins and is responsible for DNA packaging and gene repression in prokaryotes. In this study, the binding of ppGpp to CRP and H-NS was determined by fluorescence spectroscopy. CRP from Escherichia coli exhibited intrinsic fluorescence at 341 nm when excited at 280 nm. The fluorescence intensity decreased in the presence of ppGpp. The dissociation constant of 35 ± 3 µM suggests that ppGpp binds to CRP with a similar affinity to cAMP. H-NS also shows intrinsic fluorescence at 329 nm. The fluorescence intensity was decreased by various ligands and the calculated dissociation constant for ppGpp was 80 ± 11 µM, which suggests that the binding site was occupied fully by ppGpp under starvation conditions. This study suggests the modulatory effects of ppGpp in gene expression regulated by CRP and H-NS. The method described here may be applicable to many other proteins.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253608
Author(s):  
Lina Baranauskiene ◽  
Lina Škiudaitė ◽  
Vilma Michailovienė ◽  
Vytautas Petrauskas ◽  
Daumantas Matulis

Twelve carbonic anhydrase (CA) isoforms catalyze carbon dioxide hydration to bicarbonate and acid protons and are responsible for many biological functions in human body. Despite their vital functions, they are also responsible for, or implicated in, numerous ailments and diseases such as glaucoma, high altitude sickness, and cancer. Because CA isoforms are highly homologous, clinical drugs designed to inhibit enzymatic activity of a particular isoform, can also bind to others with similar affinity causing toxic side effects. In this study, the affinities of twelve CA isoforms have been determined for nineteen clinically used drugs used to treat hypertension related diseases, i.e. thiazides, indapamide, and metolazone. Their affinities were determined using a fluorescent thermal shift assay. Stopped flow assay and isothermal titration calorimetry were also employed on a subset of compounds and proteins to confirm inhibition of CA enzymatic activity and verify the quantitative agreement between different assays. The findings of this study showed that pharmaceuticals could bind to human CA isoforms with variable affinities and inhibit their catalytic activity, even though the drug was intended to interact with a different (non-CA) protein target. Relatively minor structural changes of the compounds may cause significant changes in affinity and selectivity for a particular CA isoform.


2021 ◽  
Vol 22 (12) ◽  
pp. 6334
Author(s):  
Alessandra Camarca ◽  
Gabriele Minazzato ◽  
Angela Pennacchio ◽  
Alessandro Capo ◽  
Adolfo Amici ◽  
...  

Nicotinamide mononucleotide (NMN) is a key intermediate in the nicotinamide adenine dinucleotide (NAD+) biosynthesis. Its supplementation has demonstrated beneficial effects on several diseases. The aim of this study was to characterize NMN deamidase (PncC) inactive mutants to use as possible molecular recognition elements (MREs) for an NMN-specific biosensor. Thermal stability assays and steady-state fluorescence spectroscopy measurements were used to study the binding of NMN and related metabolites (NaMN, Na, Nam, NR, NAD, NADP, and NaAD) to the PncC mutated variants. In particular, the S29A PncC and K61Q PncC variant forms were selected since they still preserve the ability to bind NMN in the micromolar range, but they are not able to catalyze the enzymatic reaction. While S29A PncC shows a similar affinity also for NaMN (the product of the PncC catalyzed reaction), K61Q PncC does not interact significantly with it. Thus, PncC K61Q mutant seems to be a promising candidate to use as specific probe for an NMN biosensor.


Author(s):  
Dianne M. Perez

The α1-adrenergic receptors (ARs) are G-protein coupled receptors that bind the endogenous catecholamines, norepinephrine, and epinephrine. They play a key role in the regulation of the sympathetic nervous system along with β and α2-AR family members. While all of the adrenergic receptors bind with similar affinity to the catecholamines, they can regulate different physiologies and pathophysiologies in the body because they couple to different G-proteins and signal transduction pathways, commonly in opposition to one another. While α1-AR subtypes (α1A, α1B, α1C) have long been known to be primary regulators of vascular smooth muscle contraction, blood pressure, and cardiac hypertrophy, their role in neurotransmission, improving cognition, protecting the heart during ischemia and failure, and regulating whole body and organ metabolism are not well known and are more recent developments. These advancements have been made possible through the development of transgenic and knockout mouse models and more selective ligands to advance their research. Here, we will review the recent literature to provide new insights into these physiological functions and possible use as a therapeutic target.


2021 ◽  
Author(s):  
Vaibhav Upadhyay ◽  
Alexandra Lucas ◽  
Sudipta Panja ◽  
Krishna Mallela

Emergence of new SARS-CoV-2 variants has raised concerns at the effectiveness of vaccines and antibody therapeutics developed against the unmutated wild-type virus. It is thus important to understand the emergence of mutants from an evolutionary viewpoint to be able to devise effective countermeasures against new variants. We examined the effect of 12 most commonly occurring mutations in the receptor binding domain (RBD) on its expression, stability, activity, and antibody escape potential- some of the factors that may influence the natural selection of mutants. Recombinant proteins were expressed in human cells. Stability was measured using thermal denaturation melts. Activity and antibody escape potential were measured using isothermal titration calorimetry in terms of binding of RBD variants to ACE2 and to a neutralizing human antibody CC12.1, respectively. Our results show that variants differ in their expression levels, suggesting that mutations can impact the availability of proteins for virus assembly. All variants have similar or higher stability than the wild-type, implying that increased RBD stability might be another important factor in virus evolution. In terms of ACE2 binding, when compared to the wild-type, only 3 out of 7 expressed variants show stronger affinity, 2 have similar affinity, whereas the other 2 have weaker affinity, indicating that increased affinity towards ACE2 is an important but not the sole factor in the natural selection of variants. In terms of CC12.1 binding, when compared to the wild-type, 4 out of 7 variants have weaker affinity, 2 have a similar affinity, and 1 variant has a stronger affinity. Taken together, these results indicate that multiple factors contribute towards the natural selection of variants, and all of these factors have to be considered in order to understand the natural selection of SARS-CoV-2 variants. In addition, since not all variants can escape a given neutralizing antibody, antibodies to treat new variants can be chosen based on the specific mutations in that particular variant.


2021 ◽  
Author(s):  
M. Moshari ◽  
Q. Wang ◽  
M. Michalak ◽  
M. Klobukowski ◽  
J. A. Tuszynski

Abstract Scoulerine is a natural compound that is known to bind to tubulin and has anti-mitotic properties demonstrated in various cancer cells. Its molecular mode of action has not been precisely known. In this work we perform computational prediction and experimental validation of the mode of action of scoulerine. Based on the existing data in the Protein Data Bank (PDB) and using homology modeling we create human tubulin structures corresponding to both free tubulin dimers and tubulin in a microtubule. We then perform docking of the optimized structure of scoulerine and find the highest affinity binding sites located in both the free tubulin and in a microtubule. We conclude that binding in the vicinity of the colchicine binding site and near the laulimalide binding site are the most likely locations for scoulerine interacting with tubulin. Thermophoresis assays using scoulerine and tubulin in both free and polymerized form confirm these computational predictions. We conclude that scoulerine exhibits a unique property of a dual mode of action with both microtubule stabilization and tubulin polymerization inhibition, both of which have similar affinity values.


Sign in / Sign up

Export Citation Format

Share Document