fibrin structure
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 15)

H-INDEX

29
(FIVE YEARS 1)

Author(s):  
Mustafa Vakur Bor ◽  
Søren Feddersen ◽  
Inge Søkilde Pedersen ◽  
Johannes Jakobsen Sidelmann ◽  
Søren Risom Kristensen

AbstractThe congenital dysfibrinogenemias, most often associated with bleeding disorders, encompass mutations in the amino-terminal end of fibrinogen α-chain consisting of Gly17-Pro18-Arg19-Val20, known as knob A, which is a critical site for fibrin polymerization. Here we review the studies reporting dysfibrinogenemia due to mutations affecting fibrinogen knob A and identified 29 papers. The number of reports on dysfibrinogenemias related to residues Gly17, Pro18, Arg19, and Val20 is 5, 4, 18, and 2, respectively. Dysfibrinogenemias related to residues Gly17, Pro18, and Val20 are exclusively associated with bleeding tendency. However, the clinical picture associated with dysfibrinogenemia related to residue Arg19 varies, with most patients suffering from bleeding tendencies, but also transitory ischemic attacks and retinal thrombosis may occur. The reason for this variation is unclear. To elaborate the genotype–phenotype associations further, we studied a Danish family with knob A-related dysfibrinogenemia caused by the Aα Arg19Gly (p.Arg19Gly) mutation using whole-exome sequencing and fibrin structure analysis. Our family is the first reported carrying the p.Arg19Gly mutation combined with one or more single nucleotide polymorphisms (SNP)s in FGA, FGB, and/or FGG and increased fibrin fiber thickness and fibrin mass-to-length ratio suffering from pulmonary emboli, suggesting that compound genotypes may contribute to the thrombogenic phenotype of these patients. Our review, accordingly, focuses on significance of SNPs, compound genotypes, and fibrin structure measures affecting the genotype–phenotype associations in fibrinogen knob A mutations.


2021 ◽  
Author(s):  
Beth A. Bouchard ◽  
Christos Colovos ◽  
Michael Lawson ◽  
Adrian Sackhiem ◽  
Kara J. Mould ◽  
...  

Objective: Coagulopathy in severe COVID-19 is common but poorly understood. The purpose of this study was to determine how SARS-CoV-2 infection impacts histone levels, fibrin structure, and endogenous thrombin potential in the presence and absence of endothelial cells. Approach: We studied individuals with SARS-CoV-2 infection and acute respiratory distress syndrome at the time of initiation of mechanical ventilation compared to healthy controls. Blood samples were assayed for levels of histone-DNA complexes. Confocal microscopy was used to evaluate fibrin structure in clots formed from recalcified plasma samples using fluorescently-labeled fibrinogen. Endogenous thrombin potential was measured by calibrated automated thrombin assays in the presence of tissue factor and phospholipid (PCPS) or cultured human endothelial cells. Results: Circulating nucleosomes were elevated in the plasma of COVID-19 patients relative to healthy controls (n=6, each group). COVID-19 patient plasma thrombin generation was also altered. Despite having an increased endogenous thrombin potential, patient plasma samples exhibited prolonged lag times and times to peak thrombin in the presence of added tissue factor and PCPS. Strikingly different results were observed when endothelial cells were used in place of tissue factor and PCPS. Control plasma samples did not generate measurable thrombin (lag time >60 min); in contrast, plasma samples from COVID-19+ patients generated thrombin (mean lag time ~20 min). Consistent with the observed alterations in thrombin generation, clots from COVID-19 subjects exhibited a denser fibrin network, thinner fibers and lower fibrin resolvability. Conclusions: Elevated histones, aberrant fibrin formation, and increased endothelial-dependent thrombin generation in COVID-19 may contribute to coagulopathy.


2021 ◽  
Vol 499 (1) ◽  
pp. 242-246
Author(s):  
L. V. Yurina ◽  
A. D. Vasilyeva ◽  
L. A. Vasserman ◽  
N. A. Podoplelova ◽  
M. A. Panteleev ◽  
...  
Keyword(s):  

Author(s):  
Mark A. Rosenfeld ◽  
Lyubov A. Wasserman ◽  
Alexandra D. Vasilyevaa ◽  
Nadezhda A. Podoplelova ◽  
Mikhail A. Panteleev ◽  
...  

Author(s):  
Johannes Jakobsen Sidelmann ◽  
Jørgen Brodersen Gram ◽  
Jon J. Rasmussen ◽  
Caroline Kistorp

AbstractAbuse of anabolic–androgenic steroids (AASs) is suspected to increase the risk of cardiovascular disease (CVD) and cardiovascular mortality in otherwise healthy individuals. AAS abuse may increase the incidence of CVD by altering the hemostatic balance toward a procoagulant state. Studies on the effect of AAS abuse on the fibrinolytic system, however, have either demonstrated a profibrinolytic effect or no effect of AAS abuse, but the overall effect of AAS on fibrinolysis has not been addressed so far. This cross-sectional study investigated the effect of AAS on fibrin clot lysis, fibrin structure, and the hemostatic proteins, potentially affecting these measures in current and former AAS abusers and healthy age-matched controls. The study population consisted of 37 current and 33 former AAS abusers, along with 30 healthy age-matched controls. Fibrin clot lysis, fibrin structure properties, fibrinogen, coagulation factor XIII (FXIII) plasminogen, plasmin inhibitor, plasminogen activator inhibitor-1 (PAI-1), and thrombin activatable fibrinolysis inhibitor (TAFI) were determined. Fibrin clot lysis was significantly reduced in participants abusing AAS compared with former abusers and controls (p < 0.001). Plasma fibrinogen, plasminogen, and plasmin inhibitor were significantly increased in current abusers (p < 0.05). No significant differences were observed with respect to measures of fibrin structure properties, PAI-1, and TAFI (p > 0.05). In conclusion, AAS abuse depresses fibrin clot lysis. This effect is not associated with alterations in fibrin structure but is rather caused by increased plasma concentrations of fibrinogen, FXIII, and plasmin inhibitor. These findings suggest that AAS abuse may be associated with increased thrombotic disease.


2020 ◽  
Vol 133-134 ◽  
pp. 106783
Author(s):  
Michał Ząbczyk ◽  
Joanna Natorska ◽  
Krzysztof P. Malinowski ◽  
Anetta Undas

2020 ◽  
Vol 42 (3) ◽  
pp. 322-330 ◽  
Author(s):  
Sanja Lalic-Cosic ◽  
Violeta Dopsaj ◽  
Mirjana Kovac ◽  
Iva Pruner ◽  
Karin Littmann ◽  
...  
Keyword(s):  

2020 ◽  
Vol 31 (3) ◽  
pp. S81-S82
Author(s):  
S. Song ◽  
S. Levengood ◽  
S. Beebe ◽  
C. Genstler ◽  
M. Noble-Vranish
Keyword(s):  

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Miriam Cantero ◽  
Héctor Rojas ◽  
Eduardo Anglés-Cano ◽  
Rita Marchi

Abstract Background In healthy subjects fibrinogen γ/γ‘ circulates at 8–15% of the total plasma fibrinogen concentration. Elevated levels of this variant have been associated with arterial thrombosis, and its diminution with venous thrombosis. The aims of the present work were to analyze the structure of the fibrin network formed on the top of human dermal microvascular endothelial cells (HMEC-1) at different fibrinogen γ/γ‘ concentrations, as well as its influence on the secretion of fibrinolytic components. The kinetics of fibrin polymerization on top of HMEC-1 cells with 3, 10, and 30% fibrinogen γ/γ‘ was followed at 350 nm. The secretion of urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type 1 (PAI 1) by HMEC-1 were measured in the supernatant and cell lysates, after incubation with 1 nM thrombin, fibrin with 3, and 30% fibrinogen γ/γ‘, using commercial kits. The influence of fibrinogen γ/γ‘ on fibrin structure on the surface of the HMEC-1 was followed with laser scanning confocal microscopy (LSCM). Results The kinetics of fibrin formation on HMEC-1 with 3 and 10% fibrinogen γ/γ‘ were similar. However, with 30% fibrinogen γ/γ‘ both the slope and final turbity were approximately 50% less. The LSCM images showed the dramatic effects of increasing fibrinogen γ/γ‘ from 3 to 30%. The uPA and PAI 1 concentrations in culture supernatants HMEC-1 cells treated with thrombin or 30% γ/γ‘ fibrin were two-fold increased as compared to basal culture supernatants and 3% γ/γ‘ fibrin-treated HMEC-1. In all stimulatory conditions the intracellular concentration of uPA was higher than in supernatants. In contrast, the intracellular PAI 1 concentration was decreased as compared to that measured in the supernatant, including the basal condition. Conclusion A concentration of 30% fibrin γ/γ‘ alter drastically fibrin structure on the cell surface and affects the secretion of uPA and PAI 1 through its capacity to bind thrombin.


2019 ◽  
Author(s):  
Miriam Cantero ◽  
Héctor Rojas ◽  
Eduardo Anglés-Cano ◽  
Rita Marchi

Abstract Background In healthy subjects fibrinogen γ/γ' circulates at 8-15% of the total plasma fibrinogen concentration. Elevated levels of this variant have been associated with arterial thrombosis and its diminution with venous thrombosis. The aims of the present work were to analyze the structure of the fibrin network formed on the top of human dermal microvascular endothelial cells (HMEC-1) at different fibrinogen γ/γ' concentrations, as well as its influence on the secretion of fibrinolytic components. Methods The kinetics of fibrin polymerization on top of HMEC-1 cells with 3, 10, and 30% fibrinogen γ/γ' was followed at 350 nm. The secretion of urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type 1 (PAI 1) by HMEC-1 were measured in the supernatant and cell lysates, after incubation with 1 nM thrombin, fibrin with 3%, and 30% fibrinogen γ/γ', using commercial kits. The influence of fibrinogen γ/γ' on fibrin structure on the surface of the HMEC-1 was followed with laser scanning confocal microscopy (LSCM). Results The kinetic of fibrin formation on HMEC-1 with 3% and 10% fibrinogen γ/γ' was similar. However, with 30% fibrinogen γ/γ' both the slope and final turbity were approximately 50% less. The LSCM images showed the dramatic effects of increasing fibrinogen γ/γ' from 3% to 30%. The uPA and PAI 1 concentrations in culture supernatants HMEC-1 cells treated with thrombin or 30% γ/γ' fibrin were two-fold increased as compared to basal culture supernatants and 3% γ/γ' fibrin-treated HMEC-1. In all stimulatory conditions the intracellular concentration of uPA was higher than in supernatants. In contrast, the intracellular PAI 1 concentration was decreased as compared to that measured in the supernatant, including the basal condition. Conclusion A concentration of 30% fibrin γ/γ' alter drastically fibrin structure on the cell surface and affects the secretion of uPA and PAI 1 through its capacity to bind thrombin.


Sign in / Sign up

Export Citation Format

Share Document