Study of Slip Flow in Unconventional Shale Rocks Using Lattice Boltzmann Method: Effects of Boundary Conditions and TMAC

2017 ◽  
Vol 120 (1) ◽  
pp. 115-139 ◽  
Author(s):  
Rasoul Nazari Moghaddam ◽  
Mahmoud Jamiolahmady
2007 ◽  
Vol 18 (05) ◽  
pp. 805-817 ◽  
Author(s):  
G. H. TANG ◽  
W. Q. TAO ◽  
Y. L. HE

An entropic lattice Boltzmann model for gaseous slip flow in microchannels is presented. We relate the Knudsen number with the relaxation time in the lattice Boltzmann evolution equation from the gas kinetic theory. The slip velocity taking the momentum accommodation coefficient into account at the solid boundaries is obtained with kinetic boundary conditions. The two-dimensional micro-Poiseuille flow, microflow over a backward-facing step, micro-lid-driven cavity flow, and three-dimensional microflow are simulated using the present model. Numerical tests show that the results of the present lattice Boltzmann method together with the boundary scheme are in good agreement with the analytical solutions and numerical simulations by the finite volume method.


1999 ◽  
Vol 10 (06) ◽  
pp. 1003-1016 ◽  
Author(s):  
GONGWEN PENG ◽  
HAOWEN XI ◽  
SO-HSIANG CHOU

Boundary conditions in a recently-proposed finite volume lattice Boltzmann method are discussed. Numerical simulations for simple shear flow indicate that the extrapolation and the half-covolume techniques for the boundary conditions are workable in conjunction with the finite volume lattice Boltzmann method for arbitrary meshes.


Sign in / Sign up

Export Citation Format

Share Document