scholarly journals Effects of selective logging on tree species diversity and composition of Bornean tropical rain forests at different spatial scales

Plant Ecology ◽  
2012 ◽  
Vol 213 (9) ◽  
pp. 1413-1424 ◽  
Author(s):  
Nobuo Imai ◽  
Tatsuyuki Seino ◽  
Shin-ichiro Aiba ◽  
Masaaki Takyu ◽  
Jupiri Titin ◽  
...  
2005 ◽  
Vol 21 (4) ◽  
pp. 417-425 ◽  
Author(s):  
K. C. Hamer ◽  
J. K. Hill ◽  
N. Mustaffa ◽  
S. Benedick ◽  
T. N. Sherratt ◽  
...  

We used traps baited with fruit to examine how the temporal variation of butterflies within primary forest in Sabah, Borneo differed between species. In addition, we compared patterns of temporal variation in primary and selectively logged forest, and we tested the hypothesis that selective logging has different recorded impacts on species diversity of adults during the wet monsoon period and the drier remaining half of the year. Species of Satyrinae and Morphinae had significantly less-restricted flight periods than did species of Nymphalinae and Charaxinae, which were sampled mainly during the drier season, especially in primary forest. Species diversity of adults was significantly higher during the drier season in primary forest, but did not differ between seasons in logged forest. As a consequence, logging had opposite recorded impacts on diversity during wetter and drier seasons: primary forest had significantly higher diversity than logged forest during the drier season but significantly lower diversity than logged forest during the wetter monsoon season. The results of this study have important implications for the assessment of biodiversity in tropical rain forests, particularly in relation to habitat disturbance: short-term assessments that do not take account of seasonal variation in abundance are likely to produce misleading results, even in regions where the seasonal variation in rainfall is not that great.


2019 ◽  
Vol 24 (6) ◽  
pp. 335-340
Author(s):  
Nobuo Imai ◽  
John Baptist Sugau ◽  
Joan T. Pereira ◽  
Jupiri Titin ◽  
Kanehiro Kitayama

2017 ◽  
pp. 179 ◽  
Author(s):  
Miguel Martínez-Ramos

One of the major biological mysteries still to be explained is the maintenance of the enormous local tree species diversity in tropical rain forests .This review explores the relationship between the dynamics of natural regeneration and the evolutionary and ecological processes and mechanisms involved in the origin and maintenance of such extraordinary diversity. First, 1 review ideas on the origin of tree species diversity in the tropics. This review suggests that: i) historical, evolutionary and biogeographical phenomena have a paramount influence on local species richness, and ii) tropical rain forest tree communities are species unsaturated, suggesting that newly originated species may freely migrate across a regional landscape. Second, I describe the forest regeneration process. Gap dynamics, promoted by branch and tree falls, is a fundamental component of the forest canopy renewal. Small gaps (caused by branch falls) facilitate the establishment and survival of seedlings and saplings in the shaded understory (advanced regeneration), whereas large gaps (caused by tree falls) enable trees to reach mature sizes. Gap creation and tree maturation are the extremes of a process of tree and species replacement in the forest canopy. Third, I explore relationships between the tree replacement process and the population and community mechanisms that facilitate maintenance of species diversity at a local scale of a few hectares. I argue and document that factors that promote high species diversity in the advanced regeneration favor high probabilities of heterospecific replacements among canopy trees. Hence, these factors facilitate the maintenance of species diversity in the forest canopy. Frugivores, by promoting diversity in the seed rain community, and biotic agents of seed, seedling and sapling mortality by operating mainly on abundant species, are key factors in facilitating diversity. Furthermore, the existence of trade offs in tree life history attributes (such as seed dispersal capacity, survivorship in the shade and growth under gap conditions) contributes to diversity maintenance by promoting heterospecific replacements. This review does not support ú1e idea that maintenance of tree species diversity in tropical rain forest depends on random processes, as some authors have claimed. instead, I conclude that ecological phenomena have a paran1ounl role on the possibility that a species gains a membresy in such highly diverse forests.


2013 ◽  
Vol 70 (5) ◽  
pp. 535-543 ◽  
Author(s):  
Lichao Wu ◽  
Jie Liu ◽  
Atsushi Takashima ◽  
Keiichi Ishigaki ◽  
Shin Watanabe

2021 ◽  
Vol 14 ◽  
pp. 194008292199541
Author(s):  
Xavier Haro-Carrión ◽  
Bette Loiselle ◽  
Francis E. Putz

Tropical dry forests (TDF) are highly threatened ecosystems that are often fragmented due to land-cover change. Using plot inventories, we analyzed tree species diversity, community composition and aboveground biomass patterns across mature (MF) and secondary forests of about 25 years since cattle ranching ceased (SF), 10–20-year-old plantations (PL), and pastures in a TDF landscape in Ecuador. Tree diversity was highest in MF followed by SF, pastures and PL, but many endemic and endangered species occurred in both MF and SF, which demonstrates the importance of SF for species conservation. Stem density was higher in PL, followed by SF, MF and pastures. Community composition differed between MF and SF due to the presence of different specialist species. Some SF specialists also occurred in pastures, and all species found in pastures were also recorded in SF indicating a resemblance between these two land-cover types even after 25 years of succession. Aboveground biomass was highest in MF, but SF and Tectona grandis PL exhibited similar numbers followed by Schizolobium parahyba PL, Ochroma pyramidale PL and pastures. These findings indicate that although species-poor, some PL equal or surpass SF in aboveground biomass, which highlights the critical importance of incorporating biodiversity, among other ecosystem services, to carbon sequestration initiatives. This research contributes to understanding biodiversity conservation across a mosaic of land-cover types in a TDF landscape.


Sign in / Sign up

Export Citation Format

Share Document