Genetic variation in the long terminal repeat associated with the transition of Chinese equine infectious anemia virus from virulence to avirulence

Virus Genes ◽  
2009 ◽  
Vol 38 (2) ◽  
pp. 285-288 ◽  
Author(s):  
Lili Wei ◽  
Xiujuan Fan ◽  
Xiaoling Lu ◽  
Liping Zhao ◽  
Wenhua Xiang ◽  
...  
2005 ◽  
Vol 79 (9) ◽  
pp. 5653-5664 ◽  
Author(s):  
Wendy Maury ◽  
Robert J. Thompson ◽  
Quentin Jones ◽  
Sarahann Bradley ◽  
Tara Denke ◽  
...  

ABSTRACT Equine infectious anemia virus (EIAV) is a lentivirus with in vivo cell tropism primarily for tissue macrophages; however, in vitro the virus can be adapted to fibroblasts and other cell types. Tropism adaptation is associated with both envelope and long terminal repeat (LTR) changes, and findings strongly suggest that these regions of the genome influence cell tropism and virulence. Furthermore, high levels of genetic variation have been well documented in both of these genomic regions. However, specific EIAV nucleotide or amino acid changes that are responsible for cell tropism changes have not been identified. A study was undertaken with the highly virulent, macrophage-tropic strain of virus EIAVwyo to identify LTR changes associated with alterations in cell tropism. We found the stepwise generation of a new transcription factor binding motif within the enhancer that was associated with adaptation of EIAV to endothelial cells and fibroblasts. An LTR that contained the new motif had enhanced transcriptional activity in fibroblasts, whereas the new site did not alter LTR activity in a macrophage cell line. This finding supports a previous prediction that selection for new LTR genetic variants may be a consequence of cell-specific selective pressures. Additional investigations of the EIAVwyo LTR were performed in vivo to determine if LTR evolution could be detected over the course of a 3-year infection. Consistent with previous in vivo findings, we observed no changes in the enhancer region of the LTR over that time period, indicating that the EIAVwyo LTR was evolutionarily stable in vivo.


1987 ◽  
Vol 61 (3) ◽  
pp. 743-747 ◽  
Author(s):  
D Derse ◽  
P L Dorn ◽  
L Levy ◽  
R M Stephens ◽  
N R Rice ◽  
...  

2004 ◽  
Vol 78 (7) ◽  
pp. 3407-3418 ◽  
Author(s):  
Robert Hines ◽  
Brenda R. Sorensen ◽  
Madeline A. Shea ◽  
Wendy Maury

ABSTRACT Binding of the transcription factor PU.1 to its DNA binding motif regulates the expression of a number of B-cell- and myeloid-specific genes. The long terminal repeat (LTR) of macrophage-tropic strains of equine infectious anemia virus (EIAV) contains three PU.1 binding sites, namely an invariant promoter-proximal site as well as two upstream sites. We have previously shown that these sites are important for EIAV LTR activity in primary macrophages (W. Maury, J. Virol. 68:6270-6279, 1994). Since the sequences present in these three binding motifs are not identical, we sought to determine the role of these three sites in EIAV LTR activity. While DNase I footprinting studies indicated that all three sites within the enhancer were bound by recombinant PU.1, reporter gene assays demonstrated that the middle motif was most important for basal levels of LTR activity in macrophages and that the 5′ motif had little impact. The impact of the 3′ site became evident in Tat transactivation studies, in which the loss of the site reduced Tat-transactivated expression 40-fold. In contrast, elimination of the 5′ site had no effect on Tat-mediated activity. Binding studies were performed to determine whether differences in PU.1 binding affinity for the three sites correlated with the relative impact of each site on LTR transcription. While small differences were observed in the binding affinities of the three sites, with the promoter-proximal site having the strongest binding affinity, these differences could not account for the dramatic differences observed in the transcriptional effects. Instead, the promoter-proximal position of the 3′ motif appeared to be critical for its transcriptional impact and suggested that the PU.1 sites may serve different roles depending upon the location of the sites within the enhancer. Infectivity studies demonstrated that an LTR containing an enhancer composed of the three PU.1 sites was not sufficient to drive viral replication in macrophages. These findings indicate that while the promoter-proximal PU.1 site is the most critical site for EIAV LTR activity in the presence of Tat, other elements within the enhancer are needed for EIAV replication in macrophages.


Virology ◽  
1999 ◽  
Vol 263 (2) ◽  
pp. 408-417 ◽  
Author(s):  
Drew L. Lichtenstein ◽  
Jodi K. Craigo ◽  
Caroline Leroux ◽  
Keith E. Rushlow ◽  
R.Frank Cook ◽  
...  

2008 ◽  
Vol 89 (4) ◽  
pp. 1043-1048 ◽  
Author(s):  
Wendy O. Sparks ◽  
Karin S. Dorman ◽  
Sijun Liu ◽  
Susan Carpenter

Equine infectious anemia virus (EIAV) exhibits a high rate of genetic variation in vivo, and results in a clinically variable disease in infected horses. In vivo populations of EIAV have been characterized by the presence of distinct, genetic subpopulations of Rev that differ in phenotype and fluctuate in dominance in a manner coincident with each clinical stage of disease. This study examined the specific mutations that arose in vivo and altered the phenotype. The Rev protein was found to be highly conserved, and only 10 aa mutations were observed at a frequency greater than 10 % in the sample population. Nine of these mutations were capable of significantly altering Rev activity, either as single mutations in the context of the founder variant, or in the context of cumulatively fixed mutations. The results indicated that limited genetic variation outside the essential functional domains of Rev can alter the phenotype and may confer a selective advantage in vivo.


2012 ◽  
Vol 27 (4) ◽  
pp. 241-247 ◽  
Author(s):  
Qing Yuan ◽  
Chang Liu ◽  
Zhipin Liang ◽  
Xueqing Chen ◽  
Danhong Diao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document