envelope protein
Recently Published Documents


TOTAL DOCUMENTS

1980
(FIVE YEARS 288)

H-INDEX

98
(FIVE YEARS 11)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Minna Shin ◽  
Kiju Kim ◽  
Hyo-Ji Lee ◽  
Rangyeon Lee ◽  
Yu-Jin Jung ◽  
...  

AbstractZika virus (ZIKV) is a mosquito-borne virus that has a high risk of inducing Guillain–Barré syndrome and microcephaly in newborns. Because vaccination is considered the most effective strategy against ZIKV infection, we designed a recombinant vaccine utilizing the baculovirus expression system with two strains of ZIKV envelope protein (MR766, Env_M; ZBRX6, Env_Z). Animals inoculated with Env_M and Env_Z produced ZIKV-specific antibodies and secreted effector cytokines such as interferon-γ, tumor necrosis factor-α, and interleukin-12. Moreover, the progeny of immunized females had detectable maternal antibodies that protected them against two ZIKV strains (MR766 and PRVABC59) and a Dengue virus strain. We propose that the baculovirus expression system ZIKV envelope protein recombinant provides a safe and effective vaccine strategy.


Author(s):  
Magdalena Laska ◽  
Jesper Bonnet Møller ◽  
Jonas Heilskov Graversen ◽  
Dorte Strøbæk ◽  
Linda Blomster ◽  
...  

Background and Purpose: Peptides derived from retroviral envelope proteins have been shown to possess a wide range of immunosuppressive and anti-inflammatory activities. We have previously reported identification of such a peptide derived from the envelope protein coded by a human endogenous retrovirus (HERV). In this study we assessed effects of this peptide treatment on inhibition of immune response in the DSS-induced mice model of colitis. Furthermore, we identified that in vitro the peptide inhibits the KCa3.1 potassium channel, a potential target for therapy of immune diseases. Experimental Approach: We characterized an immunosuppressive peptide ENV59, from a specific HERV envelope protein, in vivo effects on inflammation control in acute colitis mice model and in vitro on the production of pro-inflammatory cytokines. Furthermore, we described in vitro ENV59-GP3 effects with respect to potency of inhibition on KCa3.1 channels and calcium influx. Key Results: ENV59-GP3 peptide treatment showed reduction of the disease score in the DSS-induced acute colitis mice model, which was comparable to effects of the KCa3.1 channel blocker NS6180. Analysis of cytokine production from DSS-mice model treated animals revealed equipotent inhibitory effects of the ENV59-GP3 and NS6180 compounds on the production of IL-6, TNF-α, IL-1β. Patch clamp studies show that the peptide ENV59-GP3 is a blocker of the potassium channel KCa3.1. Conclusion and Implications: Env59-GP3 represents KCa3.1 channel inhibitor underlining the implications of using virus derived channel blockers for treatment of autoimmune diseases. There are no drugs with a similar mechanism of action currently on the market.


2021 ◽  
Vol 19 (4) ◽  
pp. e48
Author(s):  
Abdullah All Jaber ◽  
Zeshan Mahmud Chowdhury ◽  
Arittra Bhattacharjee ◽  
Muntahi Mourin ◽  
Chaman Ara Keya ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes small envelope protein (E) that plays a major role in viral assembly, release, pathogenesis, and host inflammation. Previous studies demonstrated that pyrazine ring containing amiloride analogs inhibit this protein in different types of coronavirus including SARS-CoV-1 small envelope protein E (SARS-CoV-1 E). SARS-CoV-1 E has 93.42% sequence identity with SARS-CoV-2 E and shared a conserved domain NS3/small envelope protein (NS3_envE). Amiloride analog hexamethylene amiloride (HMA) can inhibit SARS-CoV-1 E. Therefore, we performed molecular docking and dynamics simulations to explore whether amiloride analogs are effective in inhibiting SARS-CoV-2 E. To do so, SARS-CoV-1 E and SARS-CoV-2 E proteins were taken as receptors while HMA and 3-amino-5-(azepan-1-yl)-N-(diaminomethylidene)-6-pyrimidin-5-ylpyrazine-2-carboxamide (3A5NP2C) were selected as ligands. Molecular docking simulation showed higher binding affinity scores of HMA and 3A5NP2C for SARS-CoV-2 E than SARS-CoV-1 E. Moreover, HMA and 3A5NP2C engaged more amino acids in SARS-CoV-2 E. Molecular dynamics (MD) simulation for 1 μs (1,000 ns) revealed that these ligands could alter the native structure of the proteins and their flexibility. Our study suggests that suitable amiloride analogs might yield a prospective drug against coronavirus disease 2019.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3555
Author(s):  
Joachim Denner

The koala retrovirus (KoRV) is spreading in the koala population from the north to the south of Australia and is also in the process of endogenization into the koala genome. Virus infection is associated with tumorigenesis and immunodeficiency and is contributing to the decline of the animal population. Antibody production is an excellent marker of retrovirus infection; however, animals carrying endogenous KoRV are tolerant. Therefore, the therapeutic immunization of animals carrying endogenous KoRV seems to be ineffective. Using the recombinant transmembrane (TM) envelope protein of the KoRV, we immunized goats, rats and mice, obtaining in all cases neutralizing antibodies which recognize epitopes in the fusion peptide proximal region (FPPR), and in the membrane-proximal external region (MPER). Immunizing several animal species with the corresponding TM envelope protein of the closely related porcine endogenous retrovirus (PERV), as well as the feline leukemia virus (FeLV), we also induced neutralizing antibodies with similar epitopes. Immunizing with the TM envelope protein in addition to the surface envelope proteins of all three viruses resulted in higher titers of neutralizing antibodies. Immunizing KoRV-negative koalas with our vaccine (which is composed of both envelope proteins) may protect these animals from infection, and these may be the starting points of a virus-free population.


2021 ◽  
Author(s):  
Moru Xu ◽  
Kun Qian ◽  
Hongxia Shao ◽  
Yongxiu Yao ◽  
Venugopal Nair ◽  
...  

Glycans on envelope glycoprotein (Env) of the subgroup J avian leukosis virus (ALV-J) play an essential role in virion integrity and infection process. In this study, we found that among the 13 predicted N-linked glycosylation sites (NGSs) in gp85 of Tibetan chicken strain TBC-J6, N17 and N193/N191 are pivotal in the virus replication. Further research illustrated that mutation at N193 weakened Env-receptor binding in blocking assay of viral entrance, co-immunoprecipitation and ELISA. Our studies also showed that N17 was involved in Env protein processing and later virion incorporation, based on the detection of p27 and Env protein in the supernatant and gp37 in the cell culture. This report is a systematic research on clarifying the biological function of NGSs on ALV-J gp85 , which would provide valuable insights in the role of gp85 in ALV life cycle as well as anti-ALV-J strategies. Importance ALV-J is a retrovirus that can cause multiple types of tumors in chickens. Among all the viral proteins, the heavily glycosylated envelope protein is especially crucial. Glycosylation plays a major role in Env protein function, including protein processing, receptor attachment and immune evasion. Notably, viruses isolated recently seem to lose the 6 th and 11 st NGSs, which are proved to be important in receptor binding. In our study, the 1 st (N17) and 8 th (N193) NGS of gp85 of strain TBC-J6 can largely influence the titer of this virus. Deglycosylation at N193 weakened Env-receptor binding, while mutation at N17 influenced Env protein processing. This study systemically analyzed the function of NGSs in ALV-J in different aspects, which may help us to understand the lifecycle of ALV-J and provide antiviral targets for the control of ALV-J.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Chih-Hsu Chang ◽  
Shu-Fan Chou ◽  
Chiaho Shih

Abstract Background The virion secretion mechanism of human hepatitis B virus (HBV) remains to be investigated. In our current study, we characterized a reverse transcriptase mutant, which changed from the YMDD motif to YMHA. We noted that this mutant YMHA secreted no virions in the medium. Because of the overlapping open reading frame (ORF) between the polymerase and the envelope genes, the lack of virion secretion is likely due to corresponding concurrent mutations in a small loop of the envelope protein (HBsAg, HBV surface antigen). In literature, small loop mutations are thought to affect virion secretion of hepatitis delta virus (HDV), but not HBV. Methods Here, we revisited the relationship between the small loop and virion secretion by site-directed mutagenesis and native agarose gel electrophoresis. Results A proline substitution at residue 196 or 198 in the small loop blocked both HBV genome-containing and genome-free virion secretion, but not the secretion of 22-nm HBsAg subviral particles. Surprisingly, a leucine substitution at residue 196 enhanced genome-containing virion secretion. It is also intriguing that a proline-197, sandwiched by residue 196 and 198, exhibited no apparent defect in secreted virions, with or without containing an HBV genome. By complementation assay, we demonstrated that the wild type small envelope protein alone is sufficient to rescue the virion secretion defect of a small loop mutant M198P. Conclusions The effect of the small loop mutation of HBV small envelope protein on virion secretion is position-dependent. It warrants further investigation how the small loop of HBsAg plays a subtle role in HBV morphogenesis and secretion of virions with or without containing an HBV genome.


2021 ◽  
Author(s):  
Inessa Manuelyan ◽  
Anna M. Schmoker ◽  
Boyd L. Yount ◽  
Philip Eisenhauer ◽  
Judith I. Keller ◽  
...  

Flaviviruses are enveloped, positive-strand RNA viruses that cause millions of infections in the human population annually. Although Zika virus (ZIKV) had been detected in humans as early as the 1950s, its reemergence in South America in 2015 resulted in a global health crisis. While flaviviruses encode 10 proteins that can be post-translationally modified by host enzymes, little is known regarding post-translational modifications (PTMs) of the flavivirus proteome. We used mass spectrometry to comprehensively identify host-driven PTMs on the ZIKV proteome. This approach allowed us to identify 43 PTMs across 8 ZIKV proteins, including several that are highly conserved within the Flavivirus genus. Notably, we found two phosphosites on the ZIKV envelope protein that are functionally important for viral propagation and appear to regulate viral budding. Additionally, we discovered 115 host kinases that interacted with ZIKV proteins and determined that Bosutinib, an FDA-approved tyrosine kinase inhibitor that targets ZIKV interacting host kinases, impairs ZIKV growth. Thus, we have defined a high-resolution map of host-driven PTMs on ZIKV proteins as well as cellular interacting kinases, uncovered a novel mechanism of host driven-regulation of ZIKV budding, and identified an FDA-approved inhibitor of ZIKV growth.


2021 ◽  
Author(s):  
Monique K Merchant ◽  
Carlos Perez Mata ◽  
Yangci Liu ◽  
Haoming Zhai ◽  
Anna V Protasio ◽  
...  

Endogenous viral elements (EVEs), accounting for 15% of our genome, serve as a genetic reservoir from which new genes can emerge. Nematode EVEs are particularly diverse and informative of virus evolution. We identify Atlas virus - an intact retrovirus-like EVE in the human hookworm Ancylostoma ceylanicum, with an envelope protein genetically related to GN-GC glycoproteins from phleboviruses. A cryo-EM structure of Atlas GC reveals a class II viral membrane fusion protein fold not previously seen in retroviruses. Atlas GC has the structural hallmarks of an active fusogen. Atlas GC trimers insert into membranes with endosomal lipid compositions and low pH. When expressed on the plasma membrane, Atlas GC has cell-cell fusion activity. RNA-Seq data analysis detected transcripts mapping to Atlas virus at different stages of hookworm development. With its preserved biological activities, Atlas GC has the potential to acquire a cellular function. Our work reveals structural plasticity in reverse-transcribing RNA viruses.


Sign in / Sign up

Export Citation Format

Share Document