A Comparative Study of Autoregressive, Autoregressive Moving Average, Gene Expression Programming and Bayesian Networks for Estimating Monthly Streamflow

2018 ◽  
Vol 32 (9) ◽  
pp. 3001-3022 ◽  
Author(s):  
Saeid Mehdizadeh ◽  
Ali Kozekalani Sales
2005 ◽  
Vol 12 (1) ◽  
pp. 55-66 ◽  
Author(s):  
W. Wang ◽  
P. H. A. J. M Van Gelder ◽  
J. K. Vrijling ◽  
J. Ma

Abstract. Conventional streamflow models operate under the assumption of constant variance or season-dependent variances (e.g. ARMA (AutoRegressive Moving Average) models for deseasonalized streamflow series and PARMA (Periodic AutoRegressive Moving Average) models for seasonal streamflow series). However, with McLeod-Li test and Engle's Lagrange Multiplier test, clear evidences are found for the existence of autoregressive conditional heteroskedasticity (i.e. the ARCH (AutoRegressive Conditional Heteroskedasticity) effect), a nonlinear phenomenon of the variance behaviour, in the residual series from linear models fitted to daily and monthly streamflow processes of the upper Yellow River, China. It is shown that the major cause of the ARCH effect is the seasonal variation in variance of the residual series. However, while the seasonal variation in variance can fully explain the ARCH effect for monthly streamflow, it is only a partial explanation for daily flow. It is also shown that while the periodic autoregressive moving average model is adequate in modelling monthly flows, no model is adequate in modelling daily streamflow processes because none of the conventional time series models takes the seasonal variation in variance, as well as the ARCH effect in the residuals, into account. Therefore, an ARMA-GARCH (Generalized AutoRegressive Conditional Heteroskedasticity) error model is proposed to capture the ARCH effect present in daily streamflow series, as well as to preserve seasonal variation in variance in the residuals. The ARMA-GARCH error model combines an ARMA model for modelling the mean behaviour and a GARCH model for modelling the variance behaviour of the residuals from the ARMA model. Since the GARCH model is not followed widely in statistical hydrology, the work can be a useful addition in terms of statistical modelling of daily streamflow processes for the hydrological community.


2019 ◽  
Vol 11 (2) ◽  
Author(s):  
Alexander Amo Baffour ◽  
Jingchun Feng ◽  
Liwei Fan ◽  
Beryl Adormaa Buanya

AbstractThis study employs four (4) Generalized Autoregressive Conditional Heteroscedasticity (GARCH) variants namely GARCH (1, 1), Glosten–Jagannathan–Runkle (GJR), Auto Regressive Integrated Moving Average (ARIMA)-GARCH and ARIMA-GJR as benchmark models to assess the performance of a proposed novel Gene Expression Programming (GEP) based univariate time series modeling approach used to conduct ex ante oil price volatility forecasts. The report illustrates that the GEP model is more superior to any of the traditional models on issues relating to both loss functions applied. The GEP model is of a greater volatility forecasting precision at different forecast horizons, therefore. There is also the existence of evidence that GJR and ARIMA-GJR differ in their loss functions, the performance is nevertheless better than GARCH (1, 1) and ARIMA-GARCH. This study conducted herein achieves importance in literature by broadening the application of gene algorithms in finance and forecasting. It also solves the problem of high error associated with the use of GARCH related models in oil price volatility forecasting.


Author(s):  
Pezhman Mousavi-Mirkalaei ◽  
Abbas Roozbahani ◽  
Mohammad Ebrahim Banihabib ◽  
Timothy O. Randhir

Sign in / Sign up

Export Citation Format

Share Document