Accumulation of Potentially Toxic Elements in Viola L. (Sect. Melanium Ging.) from the Ultramafic and Non-ultramafic Soils of the Balkan Peninsula

2021 ◽  
Vol 232 (2) ◽  
Author(s):  
Gordana Tomović ◽  
Sanja Đurović ◽  
Uroš Buzurović ◽  
Marjan Niketić ◽  
Đorđije Milanović ◽  
...  
Minerals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 502 ◽  
Author(s):  
Pietro Marescotti ◽  
Paola Comodi ◽  
Laura Crispini ◽  
Lara Gigli ◽  
Azzurra Zucchini ◽  
...  

Ultramafic soils are characterized by severe edaphic conditions induced by a low content of essential nutrients, an adverse Ca/Mg ratio, a low water-holding capacity, and high contents of geogenic potentially toxic elements (PTEs), in particular Cr, Ni, and Co. These metals commonly exceed the content limits set by environmental agencies and governments, representing serious environmental risks for ecosystems and human health. In alpine environments, ultramafic soils are characterized by modest thickness and poor horizon differentiation. Several studies on ultramafic soils have shown that their properties may be directly related to the characteristics of the parent rocks, but most of these studies deal with soil chemistry, metal availability, isotopic composition, and pedological characterization. The aim of this research is to investigate how much the geotectonic characteristics of ultramafic bedrocks, such as the degree of serpentinization, metamorphic imprint, and deformation, may affect the mineralogical and chemical variations of ultramafic soils, including the occurrence and potential mobility of the PTEs. Using a multiscale and multi-analytical approach, we fully characterize the properties and mineralogical composition of soil profiles with different ultramafic parent rocks, i.e., partially serpentinized peridotite, massive serpentinites, and foliated serpentinites, sampled within the Voltri Massif High Pressure–Low Temperature (HP–LT) metaophiolite (Western Alps, Italy). Our results, related to soils located at comparable latitude, altitude, landscape position, and pedological environment, outline that the degree of serpentinization, the metamorphic imprint, and the deformation history of the ultramafic parent rocks are key factors influencing soil evolution, mineralogy, and chemistry, as well as PTEs distribution and mobility. Moreover, this study shows that the high content of Cr, Ni, and Co in the studied ultramafic soils has to be considered of geogenic origin and highlights the need for new approaches and methods to obtain indications on the potential contamination of natural or anthropogenic soils.


Author(s):  
Shufeng She ◽  
Bifeng Hu ◽  
Xianglin Zhang ◽  
Shuai Shao ◽  
Yefeng Jiang ◽  
...  

Potentially toxic elements (PTEs) pollution in the agricultural soil of China, especially in developed regions such as the Yangtze River Delta (YRD) in eastern China, has received increasing attention. However, there are few studies on the long-term assessment of soil pollution by PTEs over large regions. Therefore, in this study, a meta-analysis was conducted to evaluate the current state and temporal trend of PTEs pollution in the agricultural land of the Yangtze River Delta. Based on a review of 118 studies published between 1993 and 2020, the average concentrations of Cd, Hg, As, Pb, Cr, Cu, Zn, and Ni were found to be 0.25 mg kg−1, 0.14 mg kg−1, 8.14 mg kg−1, 32.32 mg kg−1, 68.84 mg kg−1, 32.58 mg kg−1, 92.35 mg kg−1, and 29.30 mg kg−1, respectively. Among these elements, only Cd and Hg showed significant accumulation compared with their background values. The eastern Yangtze River Delta showed a relatively high ecological risk due to intensive industrial activities. The contents of Cd, Pb, and Zn in soil showed an increasing trend from 1993 to 2000 and then showed a decreasing trend. The results obtained from this study will provide guidance for the prevention and control of soil pollution in the Yangtze River Delta.


2021 ◽  
pp. 112285
Author(s):  
Neus González ◽  
Eudald Correig ◽  
Isa Marmelo ◽  
António Marques ◽  
Rasmus la Cour ◽  
...  

Author(s):  
Zahra Biglari Quchan Atigh ◽  
Pourya Sardari ◽  
Ebrahim Moghiseh ◽  
Behnam Asgari Lajayer ◽  
Andrew S. Hursthouse

Sign in / Sign up

Export Citation Format

Share Document