Interaction of climate change, potentially toxic elements (PTEs), and topography on plant diversity and ecosystem functions in a high-altitude mountainous region of the Tibetan Plateau

Chemosphere ◽  
2021 ◽  
pp. 130099
Author(s):  
Jingzhao Lu ◽  
Hongwei Lu ◽  
Mark L. Brusseau ◽  
Li He ◽  
Alessandra Gorlier ◽  
...  
Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1962
Author(s):  
Zhilong Zhao ◽  
Yue Zhang ◽  
Zengzeng Hu ◽  
Xuanhua Nie

The alpine lakes on the Tibetan Plateau (TP) are indicators of climate change. The assessment of lake dynamics on the TP is an important component of global climate change research. With a focus on lakes in the 33° N zone of the central TP, this study investigates the temporal evolution patterns of the lake areas of different types of lakes, i.e., non-glacier-fed endorheic lakes and non-glacier-fed exorheic lakes, during 1988–2017, and examines their relationship with changes in climatic factors. From 1988 to 2017, two endorheic lakes (Lake Yagenco and Lake Zhamcomaqiong) in the study area expanded significantly, i.e., by more than 50%. Over the same period, two exorheic lakes within the study area also exhibited spatio-temporal variability: Lake Gaeencuonama increased by 5.48%, and the change in Lake Zhamuco was not significant. The 2000s was a period of rapid expansion of both the closed lakes (endorheic lakes) and open lakes (exorheic lakes) in the study area. However, the endorheic lakes maintained the increase in lake area after the period of rapid expansion, while the exorheic lakes decreased after significant expansion. During 1988–2017, the annual mean temperature significantly increased at a rate of 0.04 °C/a, while the annual precipitation slightly increased at a rate of 2.23 mm/a. Furthermore, the annual precipitation significantly increased at a rate of 14.28 mm/a during 1995–2008. The results of this study demonstrate that the change in precipitation was responsible for the observed changes in the lake areas of the two exorheic lakes within the study area, while the changes in the lake areas of the two endorheic lakes were more sensitive to the annual mean temperature between 1988 and 2017. Given the importance of lakes to the TP, these are not trivial issues, and we now need accelerated research based on long-term and continuous remote sensing data.


2021 ◽  
Vol 41 (6) ◽  
pp. 3725-3742
Author(s):  
Jie Peng ◽  
Chaoyang Wu ◽  
Xiaoyue Wang ◽  
Linlin Lu

2017 ◽  
Vol 215 (2) ◽  
pp. 756-765 ◽  
Author(s):  
Teng Yang ◽  
Jonathan M. Adams ◽  
Yu Shi ◽  
Jin-sheng He ◽  
Xin Jing ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (11) ◽  
pp. e49230 ◽  
Author(s):  
Haiying Yu ◽  
Jianchu Xu ◽  
Erick Okuto ◽  
Eike Luedeling

2017 ◽  
Vol 71 (1) ◽  
Author(s):  
Elisabeth Hsu ◽  
Franz K. Huber ◽  
Caroline S. Weckerle

AbstractThe Shuhi of Muli County, Sichuan Province, are one of multiple ethnic groups inhabiting the river gorges of the Qinghai-Gansu-Sichuan corridor between the Tibetan plateau and the Chinese lowlands. The Shuhi have grown paddy rice since times immemorial at an unusually high altitude (ca. 2,300 m above sea level). This article aims to explain this conundrum not merely through the ecology (as is common among Tibetan area specialists), but by researching the cultivation and consumption of rice as a historically-evolved cultural practice. According to a recently formulated agro-archaeological hypothesis regarding the macro-region of Eurasia, it is possible to identify two supra-regional culture complexes distinguished by their respective culinary technologies: rice-boiling versus wheat-grinding-and-baking. The hypothesis posits that the fault line between the two supra-regional cultural complexes is precisely along this river gorges corridor. In this article we provide support for this hypothesis arguing that Shuhi ritual and kinship practices have much affinity with those of other rice-boiling peoples in Southeast Asia, whereas certain of their current religious practices are shared with the wheat-grinding Tibetans.


2021 ◽  
Author(s):  
Chengcheng Ye ◽  
Yibo Yang ◽  
Xiaomin Fang ◽  
Weilin Zhang ◽  
Chunhui Song ◽  
...  

<p>Global cooling, the early uplift of the Tibetan Plateau, and the retreat of the Paratethys are three main factors that regulate long-term climate change in the Asian interior during the Cenozoic. However, the debated elevation history of the Tibetan Plateau and the overlapping climate effects of the Tibetan Plateau uplift and Paratethys retreat makes it difficult to assess the driving mechanism on regional climate change in a particular period. Some recent progress suggests that precisely dated Paratethys transgression/regression cycles appear to have fluctuated over broad regions with low relief in the northern Tibetan Plateau in the middle Eocene–early Oligocene, when the global climate was characterized by generally continuous cooling followed by the rapid Eocene–Oligocene climate transition (EOT). Therefore, a middle Eocene–early Oligocene record from the Asian interior with unambiguous paleoclimatic implications offers an opportunity to distinguish between the climatic effects of the Paratethys retreat and those of global cooling.</p><p>Here, we present a complete paleolake salinity record from middle Eocene to early Miocene (~42-29 Ma) in the Qaidam Basin using detailed clay boron content and clay mineralogical investigations. Two independent paleosalimeters, equivalent boron and Couch’s salinity, collectively present a three-staged salinity evolution, from an oligohaline–mesohaline environment in the middle Eocene (42-~34 Ma) to a mesosaline environment in late Eocene-early Oligocene (~34-~29 Ma). This clay boron-derived salinity evolution is further supported by the published chloride-based and ostracod-based paleosalinity estimates in the Qaidam Basin. Our quantitative paleolake reconstruction between ~42 and 29 Ma in the Qaidam Basin resembles the hydroclimate change in the neighboring Xining Basin, of which both present good agreement with changes of marine benthic oxygen isotope compositions. We thus speculated that the secular trend of clay boron-derived paleolake salinity in ~42-29 Ma is primarily controlled by global cooling, which regulates regional climate change by influencing the evaporation capacity in the moisture source of Qaidam Basin. Superimposed on this trend, the Paratethys transgression/regression cycles served as an important factor regulating wet/dry fluctuations in the Asian interior between ~42 and ~34 Ma.</p>


Sign in / Sign up

Export Citation Format

Share Document