Performance Metrics for Positioning Terminals Based on a GNSS in Autonomous Vehicle Networks

2020 ◽  
Vol 114 (2) ◽  
pp. 1519-1532
Author(s):  
Jamal Raiyn
2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Kevin M. Betts ◽  
Mikel D. Petty

Autonomous systems must successfully operate in complex time-varying spatial environments even when dealing with system faults that may occur during a mission. Consequently, evaluating the robustness, or ability to operate correctly under unexpected conditions, of autonomous vehicle control software is an increasingly important issue in software testing. New methods to automatically generate test cases for robustness testing of autonomous vehicle control software in closed-loop simulation are needed. Search-based testing techniques were used to automatically generate test cases, consisting of initial conditions and fault sequences, intended to challenge the control software more than test cases generated using current methods. Two different search-based testing methods, genetic algorithms and surrogate-based optimization, were used to generate test cases for a simulated unmanned aerial vehicle attempting to fly through an entryway. The effectiveness of the search-based methods in generating challenging test cases was compared to both a truth reference (full combinatorial testing) and the method most commonly used today (Monte Carlo testing). The search-based testing techniques demonstrated better performance than Monte Carlo testing for both of the test case generation performance metrics: (1) finding the single most challenging test case and (2) finding the set of fifty test cases with the highest mean degree of challenge.


2020 ◽  
Vol 12 (6) ◽  
pp. 2497 ◽  
Author(s):  
Mashael Khayyat ◽  
Abdullah Alshahrani ◽  
Soltan Alharbi ◽  
Ibrahim Elgendy ◽  
Alexander Paramonov ◽  
...  

With the recent advances and development of autonomous control systems of cars, the design and development of reliable infrastructure and communication networks become a necessity. The recent release of the fifth-generation cellular system (5G) promises to provide a step towards reliability or a panacea. However, designing autonomous vehicle networks has more requirements due to the high mobility and traffic density of such networks and the latency and reliability requirements of applications run over such networks. To this end, we proposed a multilevel cloud system for autonomous vehicles which was built over the Tactile Internet. In addition, base stations at the edge of the radio-access network (RAN) with different technologies of antennas are used in our system. Finally, simulation results show that the proposed system with multilevel clouding can significantly reduce the round-trip latency and the network congestion. In addition, our system can be adapted in the mobility scenario.


2018 ◽  
Vol 11 ◽  
pp. 32
Author(s):  
Pin-Han Ho ◽  
Limei Peng ◽  
Xiaohong Jiang ◽  
Anwar Haque

Sign in / Sign up

Export Citation Format

Share Document