Evaluation of the best linear unbiased prediction method for breeding values of fruit-quality traits in citrus

2016 ◽  
Vol 12 (6) ◽  
Author(s):  
A. Imai ◽  
T. Kuniga ◽  
T. Yoshioka ◽  
K. Nonaka ◽  
N. Mitani ◽  
...  
Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 361-373
Author(s):  
Piter Bijma ◽  
John A Woolliams

Abstract Predictions for the rate of inbreeding (ΔF) in populations with discrete generations undergoing selection on best linear unbiased prediction (BLUP) of breeding value were developed. Predictions were based on the concept of long-term genetic contributions using a recently established relationship between expected contributions and rates of inbreeding and a known procedure for predicting expected contributions. Expected contributions of individuals were predicted using a linear model, μi(x) = α βsi, where si denotes the selective advantage as a deviation from the contemporaries, which was the sum of the breeding values of the individual and the breeding values of its mates. The accuracy of predictions was evaluated for a wide range of population and genetic parameters. Accurate predictions were obtained for populations of 5–20 sires. For 20–80 sires, systematic underprediction of on average 11% was found, which was shown to be related to the goodness of fit of the linear model. Using simulation, it was shown that a quadratic model would give accurate predictions for those schemes. Furthermore, it was shown that, contrary to random selection, ΔF less than halved when the number of parents was doubled and that in specific cases ΔF may increase with the number of dams.


Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 569
Author(s):  
Chen Wei ◽  
Hanpeng Luo ◽  
Bingru Zhao ◽  
Kechuan Tian ◽  
Xixia Huang ◽  
...  

Genomic evaluations are a method for improving the accuracy of breeding value estimation. This study aimed to compare estimates of genetic parameters and the accuracy of breeding values for wool traits in Merino sheep between pedigree-based best linear unbiased prediction (PBLUP) and single-step genomic best linear unbiased prediction (ssGBLUP) using Bayesian inference. Data were collected from 28,391 yearlings of Chinese Merino sheep (classified in 1992–2018) at the Xinjiang Gonaisi Fine Wool Sheep-Breeding Farm, China. Subjectively-assessed wool traits, namely, spinning count (SC), crimp definition (CRIM), oil (OIL), and body size (BS), and objectively-measured traits, namely, fleece length (FL), greasy fleece weight (GFW), mean fiber diameter (MFD), crimp number (CN), and body weight pre-shearing (BWPS), were analyzed. The estimates of heritability for wool traits were low to moderate. The largest h2 values were observed for FL (0.277) and MFD (0.290) with ssGBLUP. The heritabilities estimated for wool traits with ssGBLUP were slightly higher than those obtained with PBLUP. The accuracies of breeding values were low to moderate, ranging from 0.362 to 0.573 for the whole population and from 0.318 to 0.676 for the genotyped subpopulation. The correlation between the estimated breeding values (EBVs) and genomic EBVs (GEBVs) ranged from 0.717 to 0.862 for the whole population, and the relative increase in accuracy when comparing EBVs with GEBVs ranged from 0.372% to 7.486% for these traits. However, in the genotyped population, the rank correlation between the estimates obtained with PBLUP and ssGBLUP was reduced to 0.525 to 0.769, with increases in average accuracy of 3.016% to 11.736% for the GEBVs in relation to the EBVs. Thus, genomic information could allow us to more accurately estimate the relationships between animals and improve estimates of heritability and the accuracy of breeding values by ssGBLUP.


2020 ◽  
Vol 98 (6) ◽  
Author(s):  
Johnna L Baller ◽  
Stephen D Kachman ◽  
Larry A Kuehn ◽  
Matthew L Spangler

Abstract Economically relevant traits are routinely collected within the commercial segments of the beef industry but are rarely included in genetic evaluations because of unknown pedigrees. Individual relationships could be resurrected with genomics, but this would be costly; therefore, pooling DNA and phenotypic data provide a cost-effective solution. Pedigree, phenotypic, and genomic data were simulated for a beef cattle population consisting of 15 generations. Genotypes mimicked a 50k marker panel (841 quantitative trait loci were located across the genome, approximately once per 3 Mb) and the phenotype was moderately heritable. Individuals from generation 15 were included in pools (observed genotype and phenotype were mean values of a group). Estimated breeding values (EBV) were generated from a single-step genomic best linear unbiased prediction model. The effects of pooling strategy (random and minimizing or uniformly maximizing phenotypic variation within pools), pool size (1, 2, 10, 20, 50, 100, or no data from generation 15), and generational gaps of genotyping on EBV accuracy (correlation of EBV with true breeding values) were quantified. Greatest EBV accuracies of sires and dams were observed when there was no gap between genotyped parents and pooled offspring. The EBV accuracies resulting from pools were usually greater than no data from generation 15 regardless of sire or dam genotyping. Minimizing phenotypic variation increased EBV accuracy by 8% and 9% over random pooling and uniformly maximizing phenotypic variation, respectively. A pool size of 2 was the only scenario that did not significantly decrease EBV accuracy compared with individual data when pools were formed randomly or by uniformly maximizing phenotypic variation (P > 0.05). Pool sizes of 2, 10, 20, or 50 did not generally lead to statistical differences in EBV accuracy than individual data when pools were constructed to minimize phenotypic variation (P > 0.05). Largest numerical increases in EBV accuracy resulting from pooling compared with no data from generation 15 were seen with sires with prior low EBV accuracy (those born in generation 14). Pooling of any size led to larger EBV accuracies of the pools than individual data when minimizing phenotypic variation. Resulting EBV for the pools could be used to inform management decisions of those pools. Pooled genotyping to garner commercial-level phenotypes for genetic evaluations seems plausible although differences exist depending on pool size and pool formation strategy.


Sign in / Sign up

Export Citation Format

Share Document