An Experimental Methodology to Characterize the Plasticity of Sheet Metals from Uniaxial to Plane Strain Tension

Author(s):  
C. Fast-Irvine ◽  
A. Abedini ◽  
J. Noder ◽  
C. Butcher
2001 ◽  
Author(s):  
W. Y. Chien ◽  
J. Pan ◽  
S. C. Tang

Abstract Failure of two aluminum sheets, AA5754 and AA6111, under stretching conditions is analyzed using a combined plane stress and plane strain approach. The sheet material is modeled by an elastic-viscoplastic constitutive relation that accounts for material plastic anisotropy, material rate sensitivity, and the softening due to the nucleation, growth, and coalescence of microvoids. Failure processes of sheet metals are modeled under plane strain tension. Also, failure strains are determined under bending conditions when the necking mode is suppressed. The results are consistent with experimental observations where the failure strain of the aluminum sheets increases significantly under bending conditions. The results indicate that when a considerable amount of necking is observed under stretching conditions, failure strains under bending conditions are higher.


2020 ◽  
Vol 134 ◽  
pp. 102813 ◽  
Author(s):  
Yanshan Lou ◽  
Saijun Zhang ◽  
Jeong Whan Yoon

2016 ◽  
Vol 2016.54 (0) ◽  
pp. _108-1_-_108-2_
Author(s):  
Yuuya ISHIMARU ◽  
Hiroshi HAMASAKI ◽  
Husahito YOSHIDA ◽  
Capilla GUSTAVO

1992 ◽  
Vol 59 (3) ◽  
pp. 485-490 ◽  
Author(s):  
P. Tugˇcu

The plane-strain tension test is analyzed numerically for a material with strain and strain-rate hardening characteristics. The effect of the prescribed rate of straining is investigated for an additive logarithmic description of the material strain-rate sensitivity. The dependency to the imposed strain rate so introduced is shown to have a significant effect on several features of the load-elongation curve such as the attainment of the load maximum, the onset of localization, and the overall engineering strain.


2018 ◽  
Vol 183 ◽  
pp. 02022
Author(s):  
Vincent Grolleau ◽  
Vincent Lafilé ◽  
Christian C. Roth ◽  
Bertrand Galpin ◽  
Laurent Mahéo ◽  
...  

Among all other stress states achievable under plane stress conditions, the lowest ductility is consistently observed for plane strain tension. For static loading conditions, V-bending of small sheet coupons is the most reliable way of characterising the strain to fracture for plane strain tension. Different from conventional notched tension specimens, necking is suppressed during V-bending which results in a remarkably constant stress state all the way until fracture initiation. The present DYMAT talk is concerned with the extension of the V-bending technique from low to high strain rate experiments. A new technique is designed with the help of finite element simulations. It makes use of modified Nakazima specimens that are subjected to V-bending. Irrespective of the loading velocity, plane strain tension conditions are maintained throughout the entire loading history up to fracture initiation. Experiments are performed on specimens extracted from aluminum 2024-T3 and dual phase DP450 steel sheets. The experimental program includes quasi static loading conditions which are achieved on a universal testing machine. In addition, high strain rate experiments are performed using a specially-designed drop tower system. In all experiments, images are acquired with two cameras to determine the surface strain history through stereo Digital Image Correlation (DIC). The experimental observations are discussed in detail and also compared with the numerical simulations to validate the proposed experimental technique


Sign in / Sign up

Export Citation Format

Share Document