Numerical Analysis of Plane-Strain Tension Test for Rate-Dependent Solids

1992 ◽  
Vol 59 (3) ◽  
pp. 485-490 ◽  
Author(s):  
P. Tugˇcu

The plane-strain tension test is analyzed numerically for a material with strain and strain-rate hardening characteristics. The effect of the prescribed rate of straining is investigated for an additive logarithmic description of the material strain-rate sensitivity. The dependency to the imposed strain rate so introduced is shown to have a significant effect on several features of the load-elongation curve such as the attainment of the load maximum, the onset of localization, and the overall engineering strain.

Shear band localizations are studied using a band model involving two polycrystalline aggregates; one representing the material inside the potential band and the other the material outside. Each of these aggregates is assumed to be homogeneously deformed and conditions of compatibility and equilibrium are enforced across the band interfaces. The aggregate constitutive response is obtained from a generalized Taylor polycrystal model, in which each grain is characterized in terms of an elastic–viscoplastic continuum slip constitutive relation, so that no ambiguity arises concerning the choice of active slip systems. Because of the material rate sensitivity a shear band bifurcation is ruled out at achievable strain levels, but localization occurs from the growth of an initial inhomogeneity. Results are presented for imposed loading histories of plane strain tension, biaxial tension and simple shear, both for an initially isotropic aggregate and for an aggregate that has undergone a pre-strain in plane strain compression. Depending on the material properties, the initial conditions and the imposed deformation state, either (i) localization, in the sense of a very high strain rate concentration in the band, takes place; or (ii) the band strain rate increases rapidly for a short interval and then saturates; or (iii) the initial inhomogeneity does not induce a large strain rate concentration in the band. The initial pre-strain promotes earlier localization in plane strain tension and in simple shear. In biaxial tension, localization occurs earlier for the pre-strained material if the initial imperfection is large, but tends to saturate for smaller imperfections. The effects of variations in imperfection amplitude and material strain rate sensitivity are illustrated.


2021 ◽  
Vol 250 ◽  
pp. 05003
Author(s):  
A. Pontillo ◽  
C. Lonardi ◽  
S. Chandran ◽  
F. Vercruysse ◽  
L. Corallo ◽  
...  

This paper presents an investigation into the effect of different stress states and strain rates on the austenite-to-martensite transformation during plastic straining of a Q&P steel. Different stress states are imposed to the steel using purposed-designed samples. The sample geometries, including in-plane shear, dogbone and plane strain samples, are optimised by finite element modelling. Tensile tests are performed at different strain rates of 0.001 s-1, 10 s-1 and 500 s-1. Digital image correlation is used to capture the strain fields during the entire deformation process. The mechanical results indicate a positive strain rate sensitivity for both the shear and plane strain specimens and a negative strain rate sensitivity for the dogbone sample. In addition, the influence of the strain rate on the strain level is more pronounced for the shear than for the plane strain specimens and for the dogbone samples.


Author(s):  
M. F. Stevens ◽  
P. S. Follansbee

The strain rate sensitivity of a variety of materials is known to increase rapidly at strain rates exceeding ∼103 sec-1. This transition has most often in the past been attributed to a transition from thermally activated guide to viscous drag control. An important condition for imposition of dislocation drag effects is that the applied stress, σ, must be on the order of or greater than the threshold stress, which is the flow stress at OK. From Fig. 1, it can be seen for OFE Cu that the ratio of the applied stress to threshold stress remains constant even at strain rates as high as 104 sec-1 suggesting that there is not a mechanism transition but that the intrinsic strength is increasing, since the threshold strength is a mechanical measure of intrinsic strength. These measurements were made at constant strain levels of 0.2, wnich is not a guarantee of constant microstructure. The increase in threshold stress at higher strain rates is a strong indication that the microstructural evolution is a function of strain rate and that the dependence becomes stronger at high strain rates.


1982 ◽  
Vol 104 (1) ◽  
pp. 41-46
Author(s):  
T. C. Hsu ◽  
I. M. Bidhendi

A superplastic Zn-Al alloy in sheet form is formed into a bulge over a circular hole by pneumatic pressure. The geometry, the stress, the strain, and the strain-rate are determined at various points covering the whole specimen and at various stages of the forming process. The complicated shape, and its complicated changes, are represented by introducing an index for the local geometry, called “prolateness,” which is also related to the local stress ratio in a simple way. The biaxial stress is analyzed into a strain-proportional and a strain-rate-proportional component, which represent, respectively, the quasi-solid and the quasi-liquid behavior of the superplastic material.


2018 ◽  
Vol 183 ◽  
pp. 02022
Author(s):  
Vincent Grolleau ◽  
Vincent Lafilé ◽  
Christian C. Roth ◽  
Bertrand Galpin ◽  
Laurent Mahéo ◽  
...  

Among all other stress states achievable under plane stress conditions, the lowest ductility is consistently observed for plane strain tension. For static loading conditions, V-bending of small sheet coupons is the most reliable way of characterising the strain to fracture for plane strain tension. Different from conventional notched tension specimens, necking is suppressed during V-bending which results in a remarkably constant stress state all the way until fracture initiation. The present DYMAT talk is concerned with the extension of the V-bending technique from low to high strain rate experiments. A new technique is designed with the help of finite element simulations. It makes use of modified Nakazima specimens that are subjected to V-bending. Irrespective of the loading velocity, plane strain tension conditions are maintained throughout the entire loading history up to fracture initiation. Experiments are performed on specimens extracted from aluminum 2024-T3 and dual phase DP450 steel sheets. The experimental program includes quasi static loading conditions which are achieved on a universal testing machine. In addition, high strain rate experiments are performed using a specially-designed drop tower system. In all experiments, images are acquired with two cameras to determine the surface strain history through stereo Digital Image Correlation (DIC). The experimental observations are discussed in detail and also compared with the numerical simulations to validate the proposed experimental technique


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 344 ◽  
Author(s):  
Simon Sevsek ◽  
Christian Haase ◽  
Wolfgang Bleck

The strain-rate-dependent deformation behavior of an intercritically annealed X6MnAl12-3 medium-manganese steel was analyzed with respect to the mechanical properties, activation of deformation-induced martensitic phase transformation, and strain localization behavior. Intercritical annealing at 675 °C for 2 h led to an ultrafine-grained multi-phase microstructure with 45% of mostly equiaxed, recrystallized austenite and 55% ferrite or recovered, lamellar martensite. In-situ digital image correlation methods during tensile tests revealed strain localization behavior during the discontinuous elastic-plastic transition, which was due to the localization of strain in the softer austenite in the early stages of plastic deformation. The dependence of the macroscopic mechanical properties on the strain rate is due to the strain-rate sensitivity of the microscopic deformation behavior. On the one hand, the deformation-induced phase transformation of austenite to martensite showed a clear strain-rate dependency and was partially suppressed at very low and very high strain rates. On the other hand, the strain-rate-dependent relative strength of ferrite and martensite compared to austenite influenced the strain partitioning during plastic deformation, and subsequently, the work-hardening rate. As a result, the tested X6MnAl12-3 medium-manganese steel showed a negative strain-rate sensitivity at very low to medium strain rates and a positive strain-rate sensitivity at medium to high strain rates.


2019 ◽  
Vol 89 (18) ◽  
pp. 3825-3838
Author(s):  
Ahmad Abuobaid ◽  
Raja Ganesh ◽  
John W Gillespie

A dynamic loop test method for measuring strain rate-dependent fiber properties was developed. During dynamic loop testing, the fiber ends are accelerated at constant levels of 20.8, 50 and 343 m/s2. The test method is used to study Kevlar® KM2-600, which fails in axial compression due to kink band formation. The compressive failure strain and strain rate at the onset of kink band formation is calculated from the critical loop diameter ( D C), which is monitored throughout the test using a high-speed camera. The results showed that compressive failure strain increases with strain rates from quasi-static to a maximum strain rate of 116 s−1 by a factor of ∼3. Kink angles (φ) and kink band spacing ( D S) were 60 ° ± 2 ° and 16 ± 3 μm, respectively, over the strain rates tested. Rate-dependent mechanisms of compressive failure by kink band formation were discussed.


Author(s):  
W-S Lee ◽  
T-H Chen

Investigation of the impact behaviour of Hadfield steel has been carried out in a broad range of strain rates from 10−3 to 9 × 103s−1 by means of a servo-hydraulic machine and a compressive split Hopkinson bar. The effects of strain rate on the impact properties, substructure evolution and fracture resistance have been evaluated. The observed stress-strain response is influenced greatly by strain rate, resulting in obvious changes of work hardening rate, strain rate sensitivity and activation volume. This rate-dependent behaviour is in good agreement with model predictions using the Zerilli-Armstrong constitutive law. Dislocation tangle and deformation twin substructures are also found to develop as a function of strain rate. Increasing dislocation and twin densities enhance the work hardening rate and flow strength. Catastrophic failure at high rates results from the formation of localized shear bands. With increasing strain rate, there is an increase in brittle cleavage microfracture, resulting in ductility loss. Microcracking initiates at grain boundaries due to the presence of carbide precipitates.


Sign in / Sign up

Export Citation Format

Share Document