Weighted compact commutator of bilinear Fourier multiplier operator

2017 ◽  
Vol 38 (3) ◽  
pp. 795-814 ◽  
Author(s):  
Guoen Hu
2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Guoping Zhao ◽  
Jiecheng Chen ◽  
Weichao Guo

We study the boundedness properties of the Fourier multiplier operatoreiμ(D)onα-modulation spacesMp,qs,α  (0≤α<1)and Besov spacesBp,qs(Mp,qs,1). We improve the conditions for the boundedness of Fourier multipliers with compact supports and for the boundedness ofeiμ(D)onMp,qs,α. Ifμis a radial functionϕ(|ξ|)andϕsatisfies some size condition, we obtain the sufficient and necessary conditions for the boundedness ofeiϕ(|D|)betweenMp1,q1s1,αandMp2,q2s2,α.


2021 ◽  
Vol 33 (4) ◽  
pp. 1015-1032
Author(s):  
Jiao Chen ◽  
Liang Huang ◽  
Guozhen Lu

Abstract In this paper, we establish the endpoint estimate ( 0 < p ≤ 1 {0<p\leq 1} ) for a trilinear pseudo-differential operator, where the symbol involved is given by the product of two standard symbols from the bilinear Hörmander class B ⁢ S 1 , 0 0 {BS^{0}_{1,0}} . The study of this operator is motivated from the L p {L^{p}} ( 1 < p < ∞ {1<p<\infty} ) estimates for the trilinear Fourier multiplier operator with flag singularities considered in [C. Muscalu, Paraproducts with flag singularities. I. A case study, Rev. Mat. Iberoam. 23 2007, 2, 705–742] and Hardy space estimates in [A. Miyachi and N. Tomita, Estimates for trilinear flag paraproducts on L ∞ L^{\infty} and Hardy spaces, Math. Z. 282 2016, 1–2, 577–613], and the L p {L^{p}} ( 1 < p < ∞ {1<p<\infty} ) estimates for the trilinear pseudo-differential operator with flag symbols in [G. Lu and L. Zhang, L p L^{p} -estimates for a trilinear pseudo-differential operator with flag symbols, Indiana Univ. Math. J. 66 2017, 3, 877–900]. More precisely, we will show that the trilinear pseudo-differential operator with flag symbols defined in (1.3) maps from the product of local Hardy spaces to the Lebesgue space, i.e., h p 1 × h p 2 × h p 3 → L p {h^{p_{1}}\times h^{p_{2}}\times h^{p_{3}}\rightarrow L^{p}} with 1 p 1 + 1 p 2 + 1 p 3 = 1 p {\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}}=\frac{1}{p}} with 0 < p < ∞ {0<p<\infty} (see Theorem 1.6 and Theorem 1.7).


Author(s):  
Kensuke Hara ◽  
Masahiro Watanabe

This paper describes a development of a method which improves the computational efficiency for a linear stability analysis of a plate in an uniform incompressible and irrotational flow. We introduce the Fourier multiplier operator to formulate the fluid and plate interaction problem with the mixed boundary condition. In previous typical approaches, a singular integral equation often appears in the formulation of a pressure distribution on the plate. The computation time for solving the integral equation is one of the problem encountered in the stability analysis. Applying the Fourier multiplier operator to this system, the equation of the plate-fluid interaction problem can be formulated with a pair of the Fourier and the inverse Fourier transforms. Moreover, the integration to derive the equations of motion can be efficiently carried out by using the discrete Fourier transform.


2018 ◽  
Vol 239 ◽  
pp. 123-152
Author(s):  
ZHENGYANG LI ◽  
QINGYING XUE

This paper will be devoted to study a class of bilinear square-function Fourier multiplier operator associated with a symbol $m$ defined by $$\begin{eqnarray}\displaystyle & & \displaystyle \mathfrak{T}_{\unicode[STIX]{x1D706},m}(f_{1},f_{2})(x)\nonumber\\ \displaystyle & & \displaystyle \quad =\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{t}{|x-z|+t}\Big)^{n\unicode[STIX]{x1D706}}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\bigg|\int _{(\mathbb{R}^{n})^{2}}e^{2\unicode[STIX]{x1D70B}ix\cdot (\unicode[STIX]{x1D709}_{1}+\unicode[STIX]{x1D709}_{2})}m(t\unicode[STIX]{x1D709}_{1},t\unicode[STIX]{x1D709}_{2})\hat{f}_{1}(\unicode[STIX]{x1D709}_{1})\hat{f}_{2}(\unicode[STIX]{x1D709}_{2})\,d\unicode[STIX]{x1D709}_{1}\,d\unicode[STIX]{x1D709}_{2}\bigg|^{2}\frac{dz\,dt}{t^{n+1}}\Big)^{1/2}.\nonumber\end{eqnarray}$$ A basic fact about $\mathfrak{T}_{\unicode[STIX]{x1D706},m}$ is that it is closely associated with the multilinear Littlewood–Paley $g_{\unicode[STIX]{x1D706}}^{\ast }$ function. In this paper we first investigate the boundedness of $\mathfrak{T}_{\unicode[STIX]{x1D706},m}$ on products of weighted Lebesgue spaces. Then, the weighted endpoint $L\log L$ type estimate and strong estimate for the commutators of $\mathfrak{T}_{\unicode[STIX]{x1D706},m}$ will be demonstrated.


2018 ◽  
Vol 48 (10) ◽  
pp. 1289
Author(s):  
Guo Weichao ◽  
Zhao Guoping ◽  
Zhao Weiren

2015 ◽  
Vol 3 ◽  
Author(s):  
MARTIJN CASPERS ◽  
JAVIER PARCET ◽  
MATHILDE PERRIN ◽  
ÉRIC RICARD

Let $\text{H}$ be a subgroup of some locally compact group $\text{G}$. Assume that $\text{H}$ is approximable by discrete subgroups and that $\text{G}$ admits neighborhood bases which are almost invariant under conjugation by finite subsets of $\text{H}$. Let $m:\text{G}\rightarrow \mathbb{C}$ be a bounded continuous symbol giving rise to an $L_{p}$-bounded Fourier multiplier (not necessarily completely bounded) on the group von Neumann algebra of $\text{G}$ for some $1\leqslant p\leqslant \infty$. Then, $m_{\mid _{\text{H}}}$ yields an $L_{p}$-bounded Fourier multiplier on the group von Neumann algebra of $\text{H}$ provided that the modular function ${\rm\Delta}_{\text{G}}$ is equal to 1 over $\text{H}$. This is a noncommutative form of de Leeuw’s restriction theorem for a large class of pairs $(\text{G},\text{H})$. Our assumptions on $\text{H}$ are quite natural, and they recover the classical result. The main difference with de Leeuw’s original proof is that we replace dilations of Gaussians by other approximations of the identity for which certain new estimates on almost-multiplicative maps are crucial. Compactification via lattice approximation and periodization theorems are also investigated.


Sign in / Sign up

Export Citation Format

Share Document