Numerical Solutions for Optimal Control of Stochastic Kolmogorov Systems

2021 ◽  
Vol 34 (5) ◽  
pp. 1703-1722
Author(s):  
George Yin ◽  
Zhexin Wen ◽  
Hongjiang Qian ◽  
Huy Nguyen
Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2863
Author(s):  
Napasool Wongvanich ◽  
I-Ming Tang ◽  
Marc-Antoine Dubois ◽  
Puntani Pongsumpun

Hand, foot and mouth disease (HFMD) is a virulent disease most commonly found in East and Southeast Asia. Symptoms include ulcers or sores, inside or around the mouth. In this research, we formulate the dynamic model of HFMD by using the SEIQR model. We separated the infection episodes where there is a higher outbreak and a lower outbreak of the disease associated with regional residency, with the higher level of outbreak occurring in the urban region, and a lower outbreak level occurring in the rural region. We developed two different optimal control programs for the types of outbreaks. Optimal Control Policy 1 (OPC1) is limited to the use of treatment only, whereas Optimal Control Policy 2 (OPC2) includes vaccination along with the treatment. The Pontryagin’s maximum principle is used to establish the necessary and optimal conditions for the two policies. Numerical solutions are presented along with numerical sensitivity analyses of the required control efforts needed as the control parameters are changed. Results show that the time tmax required for the optimal control effort to stay at the maximum amount umax exhibits an intrinsic logarithmic relationship with respect to the control parameters.


2019 ◽  
Vol 12 (03) ◽  
pp. 1950027 ◽  
Author(s):  
Malihe Najafi ◽  
Hadi Basirzadeh

In this paper, we introduced the optimal control homotopy perturbation method (OCHPM) by using the homotopy perturbation method (HPM). Every one, by using of the proposed method, can obtain numerical solutions of mathematical modeling for cancer-immunotherapy. In this paper, in order to prove the preciseness and efficiency of the OCHPM method, we compared the obtained numerical solutions with HPM. The results obtained showed that the OCHPM method is powerful to generate the numerical solutions for some therapeutic models.


2014 ◽  
Vol 1042 ◽  
pp. 172-177
Author(s):  
Guang Yan Xu ◽  
Ping Li ◽  
Biao Zhou

The strategy of unmanned aerial vehicle air combat can be described as a differential game problem. The analytical solutions for the general differential game problem are usually difficult to obtain. In most cases, we can only get its numerical solutions. In this paper, a Nash differential game problem is converted to the corresponding differential variational inequality problem, and then converted into optimal control problem via D-gap function. The nonlinear continuous optimal control problem is obtained, which is easy to get numerical solutions. Compared with other conversion methods, the specific solving process of this method is more simple, so it has certain validity and feasibility.


1989 ◽  
Vol 111 (2) ◽  
pp. 433-437 ◽  
Author(s):  
L. R. Utreja ◽  
T. J. Chung

Numerical solutions for combined convection and radiation in a laminar boundary layer on an isothermal wall are obtained using optimal control penalty (OCP) finite elements. The integro-differential energy equation is solved without any limitation of optical thickness. The expression for the divergence of radiation flux containing integral terms is written in terms of a one-dimensional radiation field for a flat plate geometry. The radiation interaction effect on the temperature distribution in the boundary layer is described. The solution of the integro-differential energy equation is then compared with known solutions in the limits of optical thickness.


Sign in / Sign up

Export Citation Format

Share Document