The cross-ratio distortion of integrably asymptotic affine homeomorphism of unit circle

2011 ◽  
Vol 55 (3) ◽  
pp. 625-632 ◽  
Author(s):  
Chong Wu
1912 ◽  
Vol 6 (98) ◽  
pp. 294-296
Author(s):  
Alfred Lodge
Keyword(s):  

I wish to call attention to the value, for some purposes, ot the notation for the ratio ; and for the cross-ratio . For instance: in Menelaus’ theorem for the property of a transversal meeting the sides of a triangle ABC in the points P, Q, R, the first mentioned notation makes the property shine out very clearly The equation in the form is , which conspicuously separates the points on the transversal from the angular points of the triangle.


2013 ◽  
Vol 56 (3) ◽  
pp. 520-533 ◽  
Author(s):  
Abdelkrim Elbasraoui ◽  
Abdellah Sebbar

Abstract.In this paper we study the notion of equivariant forms introduced in the authors' previous works. In particular, we completely classify all the equivariant forms for a subgroup of SL2(ℤ) by means of the cross-ratio, weight 2 modular forms, quasimodular forms, as well as differential forms of a Riemann surface and sections of a canonical line bundle.


2019 ◽  
Vol 27 (1) ◽  
pp. 47-60
Author(s):  
Roland Coghetto

Summary Using Mizar [1], in the context of a real vector space, we introduce the concept of affine ratio of three aligned points (see [5]). It is also equivalent to the notion of “Mesure algèbrique”1, to the opposite of the notion of Teilverhältnis2 or to the opposite of the ordered length-ratio [9]. In the second part, we introduce the classic notion of “cross-ratio” of 4 points aligned in a real vector space. Finally, we show that if the real vector space is the real line, the notion corresponds to the classical notion3 [9]: The cross-ratio of a quadruple of distinct points on the real line with coordinates x1, x2, x3, x4 is given by: $$({x_1},{x_2};{x_3},{x_4}) = {{{x_3} - {x_1}} \over {{x_3} - {x_2}}}.{{{x_4} - {x_2}} \over {{x_4} - {x_1}}}$$ In the Mizar Mathematical Library, the vector spaces were first defined by Kusak, Leonczuk and Muzalewski in the article [6], while the actual real vector space was defined by Trybulec [10] and the complex vector space was defined by Endou [4]. Nakasho and Shidama have developed a solution to explore the notions introduced by different authors4 [7]. The definitions can be directly linked in the HTMLized version of the Mizar library5. The study of the cross-ratio will continue within the framework of the Klein- Beltrami model [2], [3]. For a generalized cross-ratio, see Papadopoulos [8].


EDUPEDIA ◽  
2018 ◽  
Vol 2 (2) ◽  
pp. 161
Author(s):  
Febriyana Putra Pratama ◽  
Julan Hernadi

This research aims to know the interpretation the undefined terms on Hyperbolic geometry and it’s consistence with respect to own axioms of Poincare disk model. This research is a literature study that discusses about Hyperbolic geometry. This study refers to books of Foundation of Geometry second edition by Gerard A. Venema (2012), Euclidean and Non Euclidean Geometry (Development and History)  by Greenberg (1994), Geometry : Euclid and Beyond by Hartshorne (2000) and Euclidean Geometry: A First Course by M. Solomonovich (2010). The steps taken in the study are: (1) reviewing the various references on the topic of Hyperbolic geometry. (2) representing the definitions and theorems on which the Hyperbolic geometry is based. (3) prepare all materials that have been collected in coherence to facilitate the reader in understanding it. This research succeeded in interpret the undefined terms of Hyperbolic geometry on Poincare disk model. The point is coincide point in the Euclid on circle . Then the point onl γ is not an Euclid point. That point interprets the point on infinity. Lines are categoried in two types. The first type is any open diameters of   . The second type is any open arcs of circle. Half-plane in Poincare disk model is formed by Poincare line which divides Poincare field into two parts. The angle in this model is interpreted the same as the angle in Euclid geometry. The distance is interpreted in Poincare disk model defined by the cross-ratio as follows. The definition of distance from  to  is , where  is cross-ratio defined by  . Finally the study also is able to show that axioms of Hyperbolic geometry on the Poincare disk model consistent with respect to associated undefined terms.


1996 ◽  
Vol 28 (03) ◽  
pp. 641-661 ◽  
Author(s):  
K. V. Mardia ◽  
Colin Goodall ◽  
Alistair Walder

In machine vision, objects are observed subject to an unknown projective transformation, and it is usual to use projective invariants for either testing for a false alarm or for classifying an object. For four collinear points, the cross-ratio is the simplest statistic which is invariant under projective transformations. We obtain the distribution of the cross-ratio under the Gaussian error model with different means. The case of identical means, which has appeared previously in the literature, is derived as a particular case. Various alternative forms of the cross-ratio density are obtained, e.g. under the Casey arccos transformation, and under an arctan transformation from the real projective line of cross-ratios to the unit circle. The cross-ratio distributions are novel to the probability literature; surprisingly various types of Cauchy distribution appear. To gain some analytical insight into the distribution, a simple linear-ratio is also introduced. We also give some results for the projective invariants of five coplanar points. We discuss the general moment properties of the cross-ratio, and consider some inference problems, including maximum likelihood estimation of the parameters.


2019 ◽  
Vol 72 (3) ◽  
pp. 771-801
Author(s):  
Steven Abrams ◽  
Paul Janssen ◽  
Jan Swanepoel ◽  
Noël Veraverbeke

Sign in / Sign up

Export Citation Format

Share Document