On the “spring predictability barrier” for strong El Niño events as derived from an intermediate coupled model ensemble prediction system

2017 ◽  
Vol 60 (9) ◽  
pp. 1614-1631 ◽  
Author(s):  
QianQian Qi ◽  
WanSuo Duan ◽  
Fei Zheng ◽  
YouMin Tang
2013 ◽  
Vol 17 (6) ◽  
pp. 2107-2120 ◽  
Author(s):  
S. Davolio ◽  
M. M. Miglietta ◽  
T. Diomede ◽  
C. Marsigli ◽  
A. Montani

Abstract. Numerical weather prediction models can be coupled with hydrological models to generate streamflow forecasts. Several ensemble approaches have been recently developed in order to take into account the different sources of errors and provide probabilistic forecasts feeding a flood forecasting system. Within this framework, the present study aims at comparing two high-resolution limited-area meteorological ensembles, covering short and medium range, obtained via different methodologies, but implemented with similar number of members, horizontal resolution (about 7 km), and driving global ensemble prediction system. The former is a multi-model ensemble, based on three mesoscale models (BOLAM, COSMO, and WRF), while the latter, following a single-model approach, is the operational ensemble forecasting system developed within the COSMO consortium, COSMO-LEPS (limited-area ensemble prediction system). The meteorological models are coupled with a distributed rainfall-runoff model (TOPKAPI) to simulate the discharge of the Reno River (northern Italy), for a recent severe weather episode affecting northern Apennines. The evaluation of the ensemble systems is performed both from a meteorological perspective over northern Italy and in terms of discharge prediction over the Reno River basin during two periods of heavy precipitation between 29 November and 2 December 2008. For each period, ensemble performance has been compared at two different forecast ranges. It is found that, for the intercomparison undertaken in this specific study, both mesoscale model ensembles outperform the global ensemble for application at basin scale. Horizontal resolution is found to play a relevant role in modulating the precipitation distribution. Moreover, the multi-model ensemble provides a better indication concerning the occurrence, intensity and timing of the two observed discharge peaks, with respect to COSMO-LEPS. This seems to be ascribable to the different behaviour of the involved meteorological models. Finally, a different behaviour comes out at different forecast ranges. For short ranges, the impact of boundary conditions is weaker and the spread can be mainly attributed to the different characteristics of the models. At longer forecast ranges, the similar behaviour of the multi-model members forced by the same large-scale conditions indicates that the systems are governed mainly by the boundary conditions, although the different limited area models' characteristics may still have a non-negligible impact.


2018 ◽  
Vol 31 (4) ◽  
pp. 1315-1335 ◽  
Author(s):  
Samantha Ferrett ◽  
Matthew Collins ◽  
Hong-Li Ren

The rate of damping of tropical Pacific sea surface temperature anomalies (SSTAs) associated with El Niño events by surface shortwave heat fluxes has significant biases in current coupled climate models [phase 5 of the Coupled Model Intercomparison Project (CMIP5)]. Of 33 CMIP5 models, 16 have shortwave feedbacks that are weakly negative in comparison to observations, or even positive, resulting in a tendency of amplification of SSTAs. Two biases in the cloud response to El Niño SSTAs are identified and linked to significant mean state biases in CMIP5 models. First, cool mean SST and reduced precipitation are linked to comparatively less cloud formation in the eastern equatorial Pacific during El Niño events, driven by a weakened atmospheric ascent response. Second, a spurious reduction of cloud driven by anomalous surface relative humidity during El Niño events is present in models with more stable eastern Pacific mean atmospheric conditions and more low cloud in the mean state. Both cloud response biases contribute to a weak negative shortwave feedback or a positive shortwave feedback that amplifies El Niño SSTAs. Differences between shortwave feedback in the coupled models and the corresponding atmosphere-only models (AMIP) are also linked to mean state differences, consistent with the biases found between different coupled models. Shortwave feedback bias can still persist in AMIP, as a result of persisting weak shortwave responses to anomalous cloud and weak cloud responses to atmospheric ascent. This indicates the importance of bias in the atmosphere component to coupled model feedback and mean state biases.


Sign in / Sign up

Export Citation Format

Share Document