earth system model
Recently Published Documents


TOTAL DOCUMENTS

860
(FIVE YEARS 413)

H-INDEX

54
(FIVE YEARS 15)

2022 ◽  
Author(s):  
Johann Jungclaus ◽  
S J Lorenz ◽  
H Schmidt ◽  
V Brovkin ◽  
N Brüggemann ◽  
...  

2022 ◽  
Author(s):  
Chia-Te Chien ◽  
Jonathan V. Durgadoo ◽  
Dana Ehlert ◽  
Ivy Frenger ◽  
David P. Keller ◽  
...  

Abstract. The consideration of marine biogeochemistry is essential for simulating the carbon cycle in an Earth system model. Here we present the implementation and evaluation of a marine biogeochemical model, Model of Oceanic Pelagic Stoichiometry (MOPS) in the Flexible Ocean and Climate Infrastructure (FOCI) climate model. FOCI-MOPS enables the simulation of marine biological processes, the marine carbon, nitrogen and oxygen cycles, air-sea gas exchange of CO2 and O2, and simulations with prescribed atmospheric CO2 or CO2 emissions. A series of experiments covering the historical period (1850–2014) were performed following the DECK (Diagnostic, Evaluation and Characterization of Klima) and CMIP6 (Coupled Model Intercomparison Project 6) protocols. Overall, modelled biogeochemical tracer distributions and fluxes, as well as transient evolution in surface air temperature, air-sea CO2 fluxes, and changes of ocean carbon and heat, are in good agreement with observations. Modelled inorganic and organic tracer distributions are quantitatively evaluated by statistically-derived metrics. Results of the FOCI-MOPS model, also including sea surface temperature, surface pH, oxygen (100–600 m), nitrate (0–100 m), and primary production, are within the range of other CMIP6 model results. Overall, the evaluation of FOCI-MOPS indicates its suitability for Earth climate system simulations.


2021 ◽  
Author(s):  
Raymond Spiteri ◽  
Reza Zolfaghari ◽  
Wouter Knoben ◽  
Martyn Clark

2021 ◽  
Author(s):  
Jingzhe Sun ◽  
Yingjing Jiang ◽  
Shaoqing Zhang ◽  
Weimin Zhang ◽  
Lv Lu ◽  
...  

Abstract. The Community Earth System Model (CESM) developed at the National Center of Atmospheric Research (NCAR) has been used worldwide for climate studies. This study extends the efforts of CESM development to include an online (i.e., in-core) ensemble coupled data assimilation system (CESM-ECDA) to enhance CESM’s capability for climate predictability studies and prediction applications. The CESM-ECDA system consists of an online atmospheric data assimilation (ADA) component implemented to both the finite-volume and spectral-element dynamical cores, and an online oceanic data assimilation (ODA) component. In ADA, surface pressures (Ps) are assimilated, while in ODA, gridded sea surface temperature (SST) and ocean temperature and salinity profiles at real Argo locations are assimilated. The system has been evaluated within a perfect twin experiment framework, showing significantly reduced errors of the model atmosphere and ocean states through “observation”-constraints by ADA and ODA. The weakly CDA in which both the online ADA and ODA are conducted during the coupled model integration shows smaller errors of air-sea fluxes than the single ADA and ODA, facilitating the future utilization of cross-covariance between the atmosphere and ocean at the air-sea interface. A three-year CDA reanalysis experiment is also implemented by assimilating Ps, SST and ocean temperature and salinity profiles from the real world spanning the period 1978 to 1980 using 12 ensemble members. Results show that Ps RMSE is smaller than 20CR and SST RMSE is better than ERA-20C and close to CFSR. The success of the online CESM-ECDA system is the first step to implement a high-resolution long-term climate reanalysis once the algorithm efficiency is much improved.


2021 ◽  
Vol 21 (24) ◽  
pp. 18465-18497
Author(s):  
Catherine Hardacre ◽  
Jane P. Mulcahy ◽  
Richard J. Pope ◽  
Colin G. Jones ◽  
Steven T. Rumbold ◽  
...  

Abstract. In this study we evaluate simulated surface SO2 and sulfate (SO42-) concentrations from the United Kingdom Earth System Model (UKESM1) against observations from ground-based measurement networks in the USA and Europe for the period 1987–2014. We find that UKESM1 captures the historical trend for decreasing concentrations of atmospheric SO2 and SO42- in both Europe and the USA over the period 1987–2014. However, in the polluted regions of the eastern USA and Europe, UKESM1 over-predicts surface SO2 concentrations by a factor of 3 while under-predicting surface SO42- concentrations by 25 %–35 %. In the cleaner western USA, the model over-predicts both surface SO2 and SO42- concentrations by factors of 12 and 1.5 respectively. We find that UKESM1’s bias in surface SO2 and SO42- concentrations is variable according to region and season. We also evaluate UKESM1 against total column SO2 from the Ozone Monitoring Instrument (OMI) using an updated data product. This comparison provides information about the model's global performance, finding that UKESM1 over-predicts total column SO2 over much of the globe, including the large source regions of India, China, the USA, and Europe as well as over outflow regions. Finally, we assess the impact of a more realistic treatment of the model's SO2 dry deposition parameterization. This change increases SO2 dry deposition to the land and ocean surfaces, thus reducing the atmospheric loading of SO2 and SO42-. In comparison with the ground-based and satellite observations, we find that the modified parameterization reduces the model's over-prediction of surface SO2 concentrations and total column SO2. Relative to the ground-based observations, the simulated surface SO42- concentrations are also reduced, while the simulated SO2 dry deposition fluxes increase.


Sign in / Sign up

Export Citation Format

Share Document