Optimal containment control of continuous-time multi-agent systems with unknown disturbances using data-driven approach

2020 ◽  
Vol 63 (10) ◽  
Author(s):  
Zhinan Peng ◽  
Jiefu Zhang ◽  
Jiangping Hu ◽  
Rui Huang ◽  
Bijoy Kumar Ghosh
2016 ◽  
Vol 36 (2) ◽  
pp. 179-185 ◽  
Author(s):  
Chao Ma

Purpose The purpose of this paper is to investigate the neural-network-based containment control of multi-agent systems with unknown nonlinear dynamics. Moreover, communication constraints are taken into account to reflect more realistic communication networks. Design/methodology/approach Based on the approximation property of the radial basis function neural networks, the control protocol for each agent is designed, where all the information is exchanged in the form of sampled data instead of ideal continuous-time communications. Findings By utilizing the Lyapunov stability theory and the Lyapunov–Krasovskii functional approach, sufficient conditions are developed to guarantee that all the followers can converge to the convex hull spanned by the stationary leaders. Originality/value As ideal continuous-time communications of the multi-agent systems are very difficult or even unavailable to achieve, the neural-network-based containment control of nonlinear multi-agent systems is solved under communication constraints. More precisely, sampled-data information is exchanged, which is more applicable and practical in the real-world applications.


Automatica ◽  
2015 ◽  
Vol 57 ◽  
pp. 78-84 ◽  
Author(s):  
Huiyang Liu ◽  
Long Cheng ◽  
Min Tan ◽  
Zeng-Guang Hou

Sign in / Sign up

Export Citation Format

Share Document