Aerodynamic design optimization by using a continuous adjoint method

2014 ◽  
Vol 57 (7) ◽  
pp. 1363-1375 ◽  
Author(s):  
JiaQi Luo ◽  
JunTao Xiong ◽  
Feng Liu
Author(s):  
Tianjiao Dang ◽  
Bingfei Li ◽  
Dike Hu ◽  
Yachuan Sun ◽  
Zhen Liu

An aerodynamic design optimization of a hypersonic rocket sled deflector is presented using the free-form deformation (FFD) technique. The objective is to optimize the aerodynamic shape of the hypersonic rocket sled deflector to increase its negative lift and enhance the motion stability of the rocket sled. The FFD technique is selected as the aerodynamic shape parameterization method, and the continuous adjoint method based on the gradient method is used to search the optimization in the geometric shape parameter space; the computational fluid dynamics method for a hypersonic rocket sled is employed. An automatic design optimization method for the deflector is carried out based on the aerodynamic requirements of the rocket sled. The optimization results show that the optimized deflector meets the design requirement of increasing the negative lift under the constraint of drag. By improving the pressure distribution on the surface of the deflector, the negative lift is increased by 7.39%, which confirms the effectiveness of the proposed method.


Author(s):  
Jiaqi Luo ◽  
Juntao Xiong ◽  
Feng Liu ◽  
Ivan McBean

This paper presents the application of an adjoint method to the aerodynamic design optimization of a turbine blade. With the adjoint method, the complete gradient information needed for optimization can be obtained by solving the governing flow equations and their corresponding adjoint equations only once, regardless of the number of design parameters. The formulations including imposition of appropriate boundary conditions for the adjoint equations of the Euler equations for turbomachinery problems are presented. Two design cases are demonstrated for a turbine cascade that involves a high tip flare, characteristic of steam turbine blading in low pressure turbines. The results demonstrate that the design optimization method is effective and the redesigned blade yielded weaker shock and compression waves in the supersonic region of the flow while satisfying the specified constraint. The relative effects of changing blade profile stagger, modifying the blade profile shape, and changing both stagger and profile shape at the same time are examined and compared. Navier-Stokes calculations are performed to confirm the performance at both the design and off-design conditions of the designed blade profile by the Euler method.


10.2514/1.17 ◽  
2004 ◽  
Vol 41 (5) ◽  
pp. 1082-1097 ◽  
Author(s):  
Sangho Kim ◽  
Juan J. Alonso ◽  
Antony Jameson

2010 ◽  
Vol 133 (1) ◽  
Author(s):  
Jiaqi Luo ◽  
Juntao Xiong ◽  
Feng Liu ◽  
Ivan McBean

This paper presents the application of an adjoint method to the aerodynamic design optimization of a turbine blade. With the adjoint method, the complete gradient information needed for optimization can be obtained by solving the governing flow equations and their corresponding adjoint equations only once, regardless of the number of design parameters. The formulations including imposition of appropriate boundary conditions for the adjoint equations of the Euler equations for turbomachinery problems are presented. Two design cases are demonstrated for a turbine cascade that involves a high tip flare, characteristic of steam turbine blading in low-pressure turbines. The results demonstrate that the design optimization method is effective and the redesigned blade yields weaker shock and compression waves in the supersonic region of the flow while satisfying the specified constraint. The relative effects of changing blade profile stagger, modifying the blade profile shape, and changing both stagger and profile shape at the same time are examined and compared. Navier–Stokes calculations are performed to confirm the performance at both the design and off-design conditions of the blade designed by the Euler method.


Sign in / Sign up

Export Citation Format

Share Document