Aerodynamic Design Optimization of Three Dimensional Rocket Nozzles Using Adjoint Method

2013 ◽  
Author(s):  
Sinan Eyi ◽  
Mine Yumusak
Author(s):  
Jiaqi Luo ◽  
Juntao Xiong ◽  
Feng Liu ◽  
Ivan McBean

This paper presents the application of an adjoint method to the aerodynamic design optimization of a turbine blade. With the adjoint method, the complete gradient information needed for optimization can be obtained by solving the governing flow equations and their corresponding adjoint equations only once, regardless of the number of design parameters. The formulations including imposition of appropriate boundary conditions for the adjoint equations of the Euler equations for turbomachinery problems are presented. Two design cases are demonstrated for a turbine cascade that involves a high tip flare, characteristic of steam turbine blading in low pressure turbines. The results demonstrate that the design optimization method is effective and the redesigned blade yielded weaker shock and compression waves in the supersonic region of the flow while satisfying the specified constraint. The relative effects of changing blade profile stagger, modifying the blade profile shape, and changing both stagger and profile shape at the same time are examined and compared. Navier-Stokes calculations are performed to confirm the performance at both the design and off-design conditions of the designed blade profile by the Euler method.


2010 ◽  
Vol 133 (1) ◽  
Author(s):  
Jiaqi Luo ◽  
Juntao Xiong ◽  
Feng Liu ◽  
Ivan McBean

This paper presents the application of an adjoint method to the aerodynamic design optimization of a turbine blade. With the adjoint method, the complete gradient information needed for optimization can be obtained by solving the governing flow equations and their corresponding adjoint equations only once, regardless of the number of design parameters. The formulations including imposition of appropriate boundary conditions for the adjoint equations of the Euler equations for turbomachinery problems are presented. Two design cases are demonstrated for a turbine cascade that involves a high tip flare, characteristic of steam turbine blading in low-pressure turbines. The results demonstrate that the design optimization method is effective and the redesigned blade yields weaker shock and compression waves in the supersonic region of the flow while satisfying the specified constraint. The relative effects of changing blade profile stagger, modifying the blade profile shape, and changing both stagger and profile shape at the same time are examined and compared. Navier–Stokes calculations are performed to confirm the performance at both the design and off-design conditions of the blade designed by the Euler method.


Aerospace ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 66
Author(s):  
Patrick Pölzlbauer ◽  
Andreas Kümmel ◽  
Damien Desvigne ◽  
Christian Breitsamter

The present work is part of the Clean Sky 2 project Full-Fairing Rotor Head Aerodynamic Design Optimization (FURADO), which deals with the aerodynamic design optimization of a full-fairing rotor head for the Rapid And Cost-Effective Rotorcraft (RACER) compound helicopter. The rotor head is a major drag source and previous investigations have revealed that the application of rotor head fairings can be an effective drag reduction measure. As part of the full-fairing concept, a new blade-sleeve fairing was aerodynamically optimized for cruise flight. Within this publication, the newly developed blade-sleeve fairing is put to test on an isolated, five-bladed rotor head and compared to an already existing reference blade-sleeve fairing, which was developed at Airbus Helicopters. Numerical flow simulations are performed with ANSYS Fluent 2019 R2 considering a rotating rotor head with cyclic pitch movement. The aerodynamic forces of the isolated rotor head are analyzed to determine the performance benefit of the newly developed blade-sleeve fairing. A drag reduction of 4.7% and a lift increase of 20% are obtained in comparison to the Airbus Helicopters reference configuration. Furthermore, selected surface and flow field quantities are presented to give an overview on the occurring flow phenomena.


2011 ◽  
Vol 24 (5) ◽  
pp. 568-576 ◽  
Author(s):  
Dehu ZHANG ◽  
Zhenghong GAO ◽  
Likeng HUANG ◽  
Mingliang WANG

1995 ◽  
Author(s):  
W Jou ◽  
W Huffman ◽  
D Young ◽  
R Melvin ◽  
M Bieterman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document