blade profile
Recently Published Documents


TOTAL DOCUMENTS

269
(FIVE YEARS 80)

H-INDEX

17
(FIVE YEARS 4)

Author(s):  
Suzanne Ahmad Radwan Masri, Kheir Eddine Tarsha Kurdi, Ahmad Suzanne Ahmad Radwan Masri, Kheir Eddine Tarsha Kurdi, Ahmad

Aerodynamic scientists are interested in geometry definition and possible geometric shapes that would be useful in design. This paper illustrates a simulation of a NACA four digits airfoil blade profile using MATLAB. As airfoil design became more sophisticated, this basic approach has been modified to include additional variables, and suggestions for the chord line length at the root and at the end of the blade. as well as changes in the twisting angle of the blade and its thickness, this helps to reduce the weight of the blade significantly Simulating NACA equations is very useful in obtaining coordinates of airfoil curvature for the whole series of NACA four digits, which is very effective in optimizing blade design. In order to get an optimal operating performance and high efficiency for the airfoil, the blade surface must be smooth and does not suffer any discontinuities or undefined cases, which cause separation of the boundary layer during the airflow, and get as a result great energy losses. Therefore, the conditions for the continuity of the blade was extracted using mathematical analysis, so the air flow does not suffer any interruptions which reduce the efficiency. This enable us to determine the locations of the maximum thickness of the blade sections on the chord along the blade, in addition to specifying conditions for the chord line length at the root and at the end of the blade which keep the blade curvature continuous and doesn’t have any irregular points, which also facilities writing the necessary programs.


Author(s):  
Hongjie Zhang ◽  
Zhengdao Wang ◽  
Hui Yang ◽  
Zuchao Zhu ◽  
Yikun Wei

The work proposed the double parameter optimization method of the non-volute centrifugal fan’s blade profile based on the steepest descent method. Total-pressure efficiency improvement at the high-flow area was taken as an optimization objective. A method of applying the steepest descent method to modify the blade profile of backward centrifugal fan is proposed in this paper. The gradient descent direction was analyzed to design the blade profile and obtain the optimal blade profile at a high-flow rate. Besides, numerical simulations were carried out to analyze the aerodynamic performance and the internal flow characteristics of the centrifugal fan by the computational fluid dynamics method. Numerical results showed that the blade profile along the gradient descent was optimized to effectively increase the total pressure and the total pressure efficiency of the original model at the high-flow rate. The steepest descent method for local optimization could improve the fan blade design.


2021 ◽  
Author(s):  
Man Mohan ◽  
Divyeshkumar D. Kansagara ◽  
Deepak Sharma ◽  
Ujjwal K. Saha

Abstract The Savonius rotor, a type of vertical-axis wind turbine, seems to be promising for small-scale power generation. Most of the studies conducted so far have focused on the evaluation of torque and power coefficients (CT, CP) of the rotor. This paper aims at analyzing the aerodynamic drag and lift coefficients (CD, CL) of a Savonius rotor blade profile that is generated by the simplex search method to maximize its CP. The optimization is carried out by coupling the numerical simulations with the simplex search method. The optimized blade profile thus obtained is symmetric about its axis, where one half is created through a natural cubic spline curve using three points. Two-dimensional (2D) unsteady numerical simulations have been conducted by adopting ANSYS FLUENT solver to examine the CD and CL of the optimized blade profile at an inlet air velocity of 7.30 m/s. The shear stress transport (SST) k-ω turbulence model is used to solve the transient Reynolds-averaged Navier-Stokes (RANS) equations. The aerodynamic analysis is performed over a range of tip speed ratios (TSRs). The total pressure, velocity magnitudes, and the turbulent intensity contours of the optimized blade profile are generated and studied at different angles of rotation. The CD and CL of the blade profile are investigated for a complete rotation with an increment of 1°. At TSR = 0.8, the optimized profile shows a CDmax of 1.91 at an angle of rotation of 54°, while CDmin is found to be 0.45 at an angle 147°.


2021 ◽  
Author(s):  
Parag K. Talukdar ◽  
Vinayak Kulkarni ◽  
Ujjwal K. Saha

Abstract Among the existing wind energy harvesters, the vertical-axis Savonius wind turbine rotor is found to be suitable for small-scale power generation. It is a drag-driven device where the pressure of the fluid stagnating within its blades results in its rotation. The high starting torque and poor operational efficiency of this type of turbine rotor are its distinguishing features. The main geometric and flow parameters that influence its performance are its blade profile, overlap ratio, aspect ratio and Reynolds number (Re). Among these parameters, the blade profile influences significantly on the power production. Recent studies have shown that, choice of an elliptic blade can help in harnessing more wind energy, however, it is desirable to characterize this choice through detailed studies. The present study aims at evaluating the performance of a two-elliptical-bladed Savonius turbine rotor for its dynamic torque and power characteristics. In order to characterize its performances, the developed rotor is experimented in an open circuit low speed wind tunnel. The experiments have been carried out at different Re values so as to estimate the dependence of rotor performance on Re. When the Re is increased from 57310 to 164766, the maximum power coefficient (CPmax) of the turbine rotor has shown an improvement of 43%.


Author(s):  
Sandeep Christy R ◽  
◽  
Kousik S C ◽  
Vishal Subramaniam R ◽  
Santhosh Ram R ◽  
...  

Vertical Axis Wind Turbines (VAWTs) are mostly manufactured keeping in mind the site and conditions that the wind turbine would face. There is a need to know which type of VAWT would be optimal in the conditions present at the installation site. The major factors involved are blade profile, wind velocity and blade pitch angle. This study is undertaken to study these factors and their effects on influencing the efficiency of the VAWT. A model has been made of a Darrieus VAWT with H-rotor design and is analyzed using CFD. An Iso-surface mesh is made on the model with a cylindrical air-filled domain and a κ-ε turbulence model is applied to study the effects of the wind-and-turbine blade interaction. The domain inlet indicates wind velocity; outlet is set to zero atmospheric gauge pressure and the pressure distribution across the turbine blade wall is measured. The top bottom walls of the domain are not part of the interaction. The study shows that the NACA0012 blade profile fares better than the other profiles across the range of wind velocities. However, it is less efficient with an increase in blade pitch angle for the same value of velocity. NACA0015 blade profile gives good performance when it has a zero pitch angle for intermediate and high wind velocities.


2021 ◽  
Vol 240 ◽  
pp. 109863
Author(s):  
Ruiyin Song ◽  
Yeqing Wu ◽  
Zuan Lin ◽  
Congjie Ren ◽  
Sheng Fang
Keyword(s):  

Author(s):  
Sanket Sangode

Abstract: A steam turbine is a tool that extracts thermal electricity from pressurized steam and makes use of it to do mechanical work on a rotating output shaft. The steam turbine offers the better thermodynamic performance with the aid of the usage of a couple of levels inside the growth of steam. The levels are characterized by using the manner of strength extraction from them is considered as impulse or reaction mills. On this work the parameters of steam turbine blade various and evaluation is carried out for electricity, existence and warmth switch fees. The varied parameters are the ratio of x-axis distance of blade profile with the aid of chord length and ratio of maximum peak of blade profile in y-path to the chord period. The three-D modeling is executed by way of using Catia software program. The Ansys software is used for static, thermal analysis, subsequently concluded the best design and material (haste alloy, chrome steel, inconel 600) for steam turbine blade, after steam turbine blade imported the stl record 1:2 ratio in to 3-d printing we carried out fast prototyping technique. Keywords: Steam Turbine, Thermal Energy, Impulse Turbine, Reaction Turbine, Static Analysis, Thermal Analysis


Author(s):  
Yanzhao Wu ◽  
Ran Tao ◽  
Di Zhu ◽  
Zhifeng Yao ◽  
Ruofu Xiao

Centrifugal pump is a kind of energy conversion machine for fluid delivering. It transfers the mechanical energy of impeller to the potential and kinetic energy of fluid. As a key factor in influencing the energy conversion performance of centrifugal pump, blade profile design is crucial. Traditional design concepts have ideal assumptions. To have a better design guidance, machine-learning based on neural network is used in this study. A typical centrifugal pump with simplified blade profile is numerically studied with experimental validation for a better discussion. Statistical results show that, for the high dimensional nonlinear relationship between blade angle and performance of centrifugal pump, neural network can adapt to this complex correlation better. The blade installation angle at leading-edge ( βLE′) and trailing-edge ( βTE′) and the wrap angle (Δ θ′) has significant correlation with the performance including pump head H, pump efficiency η, impeller head Himp, impeller efficiency ηimp and volute loss Δ Hvol. The influence level of blade angle follows the high-to-low order of Δ θ′, βLE′ and βTE′. Determination of blade profile can be done for improving the energy conversion efficiency. Optimal blade profiles have higher βLE′ and Δ θ′ with better flow-control ability. Compared with the blade parameters of the initial pump, the blade profile with the best centrifugal pump efficiency is the best βLE′ increased by 1.926°, Δ θ′ increased by 9.858°, Optimization of impeller efficiency βLE′ increased by 1.855°, Δ θ′ increased by 9.421°. Computational fluid dynamics indicate the elimination of vortex in impeller after optimal selection. Then, βTE′ and Δ θ′ are found influential in aggravating the circumferential flow component in this special circular-volute with generating higher loss. βTE′ has a positive correlation with impeller head which suits traditional theory. In general, the machine-learning using neural network is effective in determining blade profiles for enhancing the performance of centrifugal pump.


2021 ◽  
Vol 1995 (1) ◽  
pp. 012048
Author(s):  
Fuchuan Lan ◽  
Jiani Liu ◽  
Fuxi Zhang ◽  
Shiming Wang ◽  
Rong Chi

Sign in / Sign up

Export Citation Format

Share Document