Parallel mining and application of fuzzy association rules

2006 ◽  
Vol 1 (2) ◽  
pp. 177-182
Author(s):  
Jian-jiang Lu ◽  
Bao-wen Xu ◽  
Xiao-feng Zou ◽  
Da-zhou Kang ◽  
Yan-hui Li ◽  
...  
Author(s):  
Phan Xuan Hieu ◽  
Hà Quang Thụy

2015 ◽  
Vol 2 (3) ◽  
pp. 261-270 ◽  
Author(s):  
Bo Wang ◽  
Xiao-dong Liu ◽  
Li-dong Wang

Author(s):  
Miguel Delgado ◽  
M. Dolores Ruiz ◽  
Daniel Sánchez ◽  
M. Amparo Vila

2012 ◽  
Vol 24 (06) ◽  
pp. 513-524
Author(s):  
Mohsen Alavash Shooshtari ◽  
Keivan Maghooli ◽  
Kambiz Badie

One of the main objectives of data mining as a promising multidisciplinary field in computer science is to provide a classification model to be used for decision support purposes. In the medical imaging domain, mammograms classification is a difficult diagnostic task which calls for development of automated classification systems. Associative classification, as a special case of association rules mining, has been adopted in classification problems for years. In this paper, an associative classification framework based on parallel mining of image blocks is proposed to be used for mammograms discrimination. Indeed, association rules mining is applied to a commonly used mammography image database to classify digital mammograms into three categories, namely normal, benign and malign. In order to do so, first images are preprocessed and then features are extracted from non-overlapping image blocks and discretized for rule discovery. Association rules are then discovered through parallel mining of transactional databases which correspond to the image blocks, and finally are used within a unique decision-making scheme to predict the class of unknown samples. Finally, experiments are conducted to assess the effectiveness of the proposed framework. Results show that the proposed framework proved successful in terms of accuracy, precision, and recall, and suggest that the framework could be used as the core of any future associative classifier to support mammograms discrimination.


2011 ◽  
Vol 13 (6) ◽  
pp. 809-819 ◽  
Author(s):  
S. Vinodh ◽  
K. Eazhil Selvan ◽  
N. Hari Prakash

Sign in / Sign up

Export Citation Format

Share Document