Associative Classification
Recently Published Documents


TOTAL DOCUMENTS

305
(FIVE YEARS 72)

H-INDEX

21
(FIVE YEARS 5)

2021 ◽  
pp. 1-27
Author(s):  
Eleni Alogogianni ◽  
Maria Virvou

Addressing undeclared work is a high priority in the labor field for government policymakers since it adversely affects all involved parties and results in significant losses in tax and social security contribution revenues. In the last years, the wide use of ICT in labor inspectorates and the considerable progress in data exchange have resulted in numerous databases dispersed in various units, yet these are not effectively used to increase their functions productivity. This study presents a detailed analysis of a data mining project per the CRISP-DM methodology aiming to assist the labor inspectorates in dealing with undeclared work and other labor law violations. It uses real past inspections data merged with companies characteristics and their employment details and examines the application of two Associative Classification algorithms, the CBA and CBA2, in combination with two types of datasets, a binary and a four-class. The produced models are assessed per the data mining goals and per the initial business objectives, and the research concludes proposing an innovative inspections recommendation tool proved to offer two major benefits: a mechanism for planning targeted inspections of improved efficiency and a knowledge repository for enhancing the inspectors understanding of those features linked with labor law violations.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

Associative Classification (AC) or Class Association Rule (CAR) mining is a very efficient method for the classification problem. It can build comprehensible classification models in the form of a list of simple IF-THEN classification rules from the available data. In this paper, we present a new, and improved discrete version of the Crow Search Algorithm (CSA) called NDCSA-CAR to mine the Class Association Rules. The goal of this article is to improve the data classification accuracy and the simplicity of classifiers. The authors applied the proposed NDCSA-CAR algorithm on eleven benchmark dataset and compared its result with traditional algorithms and recent well known rule-based classification algorithms. The experimental results show that the proposed algorithm outperformed other rule-based approaches in all evaluated criteria.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

Associative Classification (AC) or Class Association Rule (CAR) mining is a very efficient method for the classification problem. It can build comprehensible classification models in the form of a list of simple IF-THEN classification rules from the available data. In this paper, we present a new, and improved discrete version of the Crow Search Algorithm (CSA) called NDCSA-CAR to mine the Class Association Rules. The goal of this article is to improve the data classification accuracy and the simplicity of classifiers. The authors applied the proposed NDCSA-CAR algorithm on eleven benchmark dataset and compared its result with traditional algorithms and recent well known rule-based classification algorithms. The experimental results show that the proposed algorithm outperformed other rule-based approaches in all evaluated criteria.


2021 ◽  
Author(s):  
İpek BALIKÇI ÇİÇEK ◽  
Dr. Öğr. Üyesi Mehmet Onur KAYA ◽  
Cemil ÇOLAK

2022 ◽  
Vol 12 (1) ◽  
pp. 0-0

Data Mining is an essential task because the digital world creates huge data daily. Associative classification is one of the data mining task which is used to carry out classification of data, based on the demand of knowledge users. Most of the associative classification algorithms are not able to analyze the big data which are mostly continuous in nature. This leads to the interest of analyzing the existing discretization algorithms which converts continuous data into discrete values and the development of novel discretizer Reliable Distributed Fuzzy Discretizer for big data set. Many discretizers suffer the problem of over splitting the partitions. Our proposed method is implemented in distributed fuzzy environment and aims to avoid over splitting of partitions by introducing a novel stopping criteria. Proposed discretization method is compared with existing distributed fuzzy partitioning method and achieved good accuracy in the performance of associative classifiers.


2021 ◽  
Vol 7 ◽  
pp. e676
Author(s):  
Hamid Hussain Awan ◽  
Waseem Shahzad

Labeled data is the main ingredient for classification tasks. Labeled data is not always available and free. Semi-supervised learning solves the problem of labeling the unlabeled instances through heuristics. Self-training is one of the most widely-used comprehensible approaches for labeling data. Traditional self-training approaches tend to show low classification accuracy when the majority of the data is unlabeled. A novel approach named Self-Training using Associative Classification using Ant Colony Optimization (ST-AC-ACO) has been proposed in this article to label and classify the unlabeled data instances to improve self-training classification accuracy by exploiting the association among attribute values (terms) and between a set of terms and class labels of the labeled instances. Ant Colony Optimization (ACO) has been employed to construct associative classification rules based on labeled and pseudo-labeled instances. Experiments demonstrate the superiority of the proposed associative self-training approach to its competing traditional self-training approaches.


Author(s):  
Parashu Ram Pal ◽  
Pankaj Pathak ◽  
Shkurte Luma-Osmani

Associations rule mining along with classification rule mining are both significant techniques of mining of knowledge in the area of knowledge discovery in massive databases stored in different geographic locations of the world. Based on such combination of these two, class association rules for mining or associative classification methods have been generated, which, in far too many cases, showed higher prediction accuracy than platitudinous conventional classifiers. Motivated by the study, in this paper, we proposed a new approach, namely IHAC (Incorporating Heuristics for efficient rule generation & rule selection in Associative Classification). First, it utilises the database to decrease the search space and then explicitly explores the potent class association rules from the optimised database. This also blends rule generation and classifier building to speed up the overall classifier construction cycle. Experimental findings showed that IHAC performs better than any further associative classification methods.


Sign in / Sign up

Export Citation Format

Share Document