Fe2O3-encapsulated SiC nanowires with superior electrochemical properties as anode materials for the lithium-ion batteries

Ionics ◽  
2021 ◽  
Author(s):  
Zhongyuan Zhang ◽  
Canfeng Fang ◽  
Javid Muhammad ◽  
Jingshuang Liang ◽  
Wenfei Yang ◽  
...  
CrystEngComm ◽  
2015 ◽  
Vol 17 (7) ◽  
pp. 1710-1715 ◽  
Author(s):  
Jiayan Zhang ◽  
Jianxing Shen ◽  
Tailin Wang ◽  
Huayong Zhang ◽  
Changbao Wei ◽  
...  

A new type of TiO2-B nanoribbons anchored with NiO nanosheets hybrid material is synthesized and exhibit outstanding electrochemical properties.


2012 ◽  
Vol 535-537 ◽  
pp. 31-35
Author(s):  
Tao Liu ◽  
Rong Bin Du ◽  
Xue Jun Kong

Composite oxides materials CuSnO3as anode materials for lithium-ion batteries were synthesized by chemical coprecipitation method using SnCl4•5H2O, NH3•H2O and Cu(NO3)2•3H2O as raw materials.The precursor CuSn(OH)6and CuSnO3powders were characterized by thermogravimertric(TG) analysis and differential thermal analysis(DTA), X-ray diffraction(XRD), and transmission electron microscope (TEM). The electrochemical properties of CuSnO3powders as anode materials of lithium ion batteries were investigated comparatively by galvanostatic charge-discharge experiments. The results show the average particle size of amorphous CuSnO3is 70nm. The initial capacity during the first lithium insertion is 1078 mA•h/g and the reversible charge capacity in first cycle is 775 mA•h/g. After 20 cycles, the charge capacity is 640 mA•h/g and this material shows moderate capacity fading with cycling. As a novel anode material for lithium ion batteries, amorphous CuSnO3demonstrates a large capacity and a low insertion potential with respect to Li metal.


2014 ◽  
Vol 6 (9) ◽  
pp. 6223-6226 ◽  
Author(s):  
Jun-chao Zheng ◽  
Ya-dong Han ◽  
Bao Zhang ◽  
Chao Shen ◽  
Lei Ming ◽  
...  

Nanoscale ◽  
2019 ◽  
Vol 11 (28) ◽  
pp. 13343-13353 ◽  
Author(s):  
Xing Li ◽  
Jiatian Fu ◽  
Yuping Sun ◽  
Mei Sun ◽  
Shaobo Cheng ◽  
...  

Electrochemical properties of core/branch-structured VS2 nanosheets@CNTs and the in situ investigation of the corresponding dynamic structural evolutions.


Nanoscale ◽  
2020 ◽  
Vol 12 (28) ◽  
pp. 15157-15168
Author(s):  
Yucang Liang ◽  
Jonathan David Oettinger ◽  
Peng Zhang ◽  
Bin Xu

N-Doped carbon nano(micro)spheres have been rationally designed, successfully synthesized and used as anode materials for lithium-ion batteries, showing excellent lithium storage properties and superior reversibility.


2018 ◽  
Vol 6 (15) ◽  
pp. 6183-6205 ◽  
Author(s):  
Wanlin Wang ◽  
Weijie Li ◽  
Shun Wang ◽  
Zongcheng Miao ◽  
Hua Kun Liu ◽  
...  

With the high consumption and increasing price of lithium resources, sodium ion batteries (SIBs) have been considered as attractive and promising potential alternatives to lithium ion batteries, owing to the abundance and low cost of sodium resources, and the similar electrochemical properties of sodium to lithium.


Sign in / Sign up

Export Citation Format

Share Document