average particle size
Recently Published Documents


TOTAL DOCUMENTS

1873
(FIVE YEARS 771)

H-INDEX

32
(FIVE YEARS 9)

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 228
Author(s):  
Natalia Rosa-Sibakov ◽  
Maria Julia de Oliveira Carvalho ◽  
Martina Lille ◽  
Emilia Nordlund

Oat bran is a nutritionally rich ingredient, but it is underutilized in semi-moist and liquid foods due to technological issues such as high viscosity and sliminess. The aim of this work was to improve the technological properties of oat bran concentrate (OBC) in high-moisture food applications by enzymatic and mechanical treatments. OBC was hydrolyzed with β-glucanase (OBC-Hyd) and the water-soluble fraction (OBC-Sol) was separated. OBC, OBC-Hyd and OBC-Sol were further microfluidized at 5% dry matter content. Enzymatic treatment and microfluidization of OBC reduced the molecular weight (Mw) of β-glucan from 2748 kDa to 893 and 350 kDa, respectively, as well as the average particle size of OBC (3.4 and 35 times, respectively). Both treatments increased the extractability of the soluble compounds from the OBC samples (up to 80%) and affected their water retention capacity. OBC in suspension had very high viscosity (969 mPa·s) when heated, which decreased after both enzyme and microfluidization treatments. The colloidal stability of the OBC in suspension was improved, especially after microfluidization. The addition of OBC samples to acid milk gels decreased syneresis, improved the water holding capacity and softened the texture. The changes in the suspension and gel characteristics were linked with reduced β-glucan Mw and OBC particle size.


2022 ◽  
Vol 8 ◽  
Author(s):  
Ao Li ◽  
Aixia Zhu ◽  
Di Kong ◽  
Chunwei Wang ◽  
Shiping Liu ◽  
...  

For improving solubility and bioaccessibility of phytosterols (PS), phytosterol nanoparticles (PNPs) were prepared by emulsification–evaporation combined high-pressure homogenization method. The organic phase was formed with the dissolved PS and soybean lecithin (SL) in anhydrous ethanol, then mixed with soy protein isolate (SPI) solution, and homogenized into nanoparticles, followed by the evaporation of ethanol. The optimum fabrication conditions were determined as PS (1%, w/v): SL of 1:4, SPI content of 0.75% (w/v), and ethanol volume of 16 ml. PNPs were characterized to have average particle size 93.35 nm, polydispersity index (PDI) 0.179, zeta potential −29.3 mV, and encapsulation efficiency (EE) 97.3%. The impact of temperature, pH, and ionic strength on the stability of fabricated PNPs was determined. After 3-h in vitro digestion, the bioaccessibility of PS in nanoparticles reached 70.8%, significantly higher than the 18.2% of raw PS. Upon freeze-drying, the particle size of PNPs increased to 199.1 nm, resulting in a bimodal distribution. The solubility of PS in water could reach up to 2.122 mg/ml, ~155 times higher than that of raw PS. Therefore, this study contributes to the development of functional PS-food ingredients.


2022 ◽  
Author(s):  
Shujie Yang ◽  
Jianbin Shen ◽  
Tiefei He ◽  
Chao Chen ◽  
Junming Wang ◽  
...  

Abstract Waste paper has become a promising raw material for the pulp and paper industry due to its low cost and because it is conducive to sustainable development. Unfortunately, waste paper contains a high volume of printed paper that is difficult to deink, which restricts its applications. Flotation deinking plays an essential role in the product quality and process cost of wastepaper recycling. This study was performed to evaluate the deinkability of environmentally friendly offset inks by flotation deinking. For this purpose, three series of four-color inks, namely, hybrid light emitting diode ultraviolet (LED‒UV), LED‒UV, and vegetable oil‒based inks, were printed on white lightweight coated papers under laboratory conditions. The deinking methodology involves repulping, deinking agent treatment, flotation, hand sheet making, and evaluation of the produced hand sheets. The obtained results indicated that the hybrid LED‒UV prints had the best deinkability. After flotation deinking, the deinking efficiency and the whiteness of the hybrid LED‒UV ink increased by 58.1% and 47.6%, respectively. LED‒UV ink had a 46.9% increase in the deinking efficiency and a 37.0% increase in the whiteness of the hand sheet. The deinking efficiency of the vegetable oil‒based ink was the lowest, at 42.1%, and the whiteness of the hand sheet increased only by 23.8%. The particle size distribution analysis demonstrated that the hybrid LED‒UV four-color ink exhibited a larger value of the average particle size than the two other. Scanning electron microscopy revealed that the hybrid LED‒UV ink particles on the surface of the fibers were the least abundant after deinking. The physical strength properties of the hand sheets, including tensile index, folding resistance, and cohesion of the hybrid LED‒UV, LED‒UV inks, and vegetable oil‒based inks, increased.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 318
Author(s):  
Mohamed E. El-Hefnawy ◽  
Sultan Alhayyani ◽  
Mohsen M. El-Sherbiny ◽  
Mohamed I. Sakran ◽  
Mohamed H. El-Newehy

Fabrication of electrospun nanofibers based on the blending of modified natural polymer, hydroxyl propyl starch (HPS) as one of the most renewable resources, with synthetic polymers, such as polyurethane (PU) is of great potential for biomedical applications. The as-prepared nanofibers were used as antimicrobial sheets via blending with biosynthesized silver nanoparticles (AgNPs), which were prepared in a safe way with low cost using the extract of Nerium oleander leaves, which acted as a reducing and stabilizing agent as well. The biosynthesized AgNPs were fully characterized by various techniques (UV-vis, TEM, DLS, zeta potential and XRD). The obtained results from UV-vis depicted that the AgNPs appeared at a wavelength equal to 404 nm affirming the preparation of AgNPs when compared with the wavelength of extract (there are no observable peaks). The average particle size of the fabricated AgNPs that mediated with HPS exhibited a very small size (less than 5 nm) with excellent stability (more than −30 mv). In addition, the fabricated nanofibers were also fully characterized and the obtained data proved that the diameter of nanofibers was enlarged with increasing the concentration of AgNPs. Additionally, the findings illustrated that the pore sizes of electrospun sheets were in the range of 75 to 350 nm. The obtained results proved that the presence of HPS displayed a vital role in decreasing the contact angle of PU nanofibers and thus, increased the hydrophilicity of the net nanofibers. It is worthy to mention that the prepared nanofibers incorporated with AgNPs exhibited incredible antimicrobial activity against pathogenic microbes that actually presented in human wounds. Moreover, P. aeruginosa was the most sensitive species to the fabricated nanofibers compared to other tested ones. The minimal inhibitory concentrations (MICs) values of AgNPs-3@NFs against P. aeruginosa, and E. faecalis, were 250 and 500 mg/L within 15 min, respectively.


Author(s):  
Adel Adly ◽  
Nagwan G. Mostafa ◽  
Abdelsalam Elawwad

Abstract This study investigated removal mechanisms, thermodynamics, and interferences of phosphorus adsorption onto nanoscale zero-valent iron (nZVI)/activated carbon composite. Activated carbon was successfully used as support for nZVI particles to overcome shortcomings of using nZVI include its tendency to aggregate and separation difficulties. A comprehensive characterization was done for the composite particles, which revealed a high specific surface area of 72.66 m2/g and an average particle size of 37 nm. Several adsorption isotherms and kinetic models have been applied to understand the removal mechanisms. Adsorption isotherm is best fitted by Freundlich and Langmuir models, which indicates that the estimated maximum phosphorus adsorption capacity is 53.76 mg/g at pH 4. Adsorption kinetics showed that the chemisorption process behaved according to a pseudo-second-order model. An adsorption mechanism study conducted using the intra-particle diffusion and Boyd kinetic models indicated that the adsorption rate is limited by surface diffusion. A thermodynamic study showed that phosphorus removal efficiency increased as the solution temperature increased from 15 to 37 °C. Finally, the results of an interference study showed that the presence of Ni2+, Cu2+, Ca2+, Na+ cations, nitrate ions (), and sodium acetate improves removal efficiency, while the presence of sulfate ions () and urea reduces removal efficiency.


2022 ◽  
Vol 9 ◽  
Author(s):  
Xi Wang ◽  
Ying Ren ◽  
Ni Suo ◽  
Guifeng Zhang

For fuel cells, to produce high-quality and low-platinum catalyst is a pressing technical problem. In this study, graphene cathode catalysts with controllable platinum content were decorated by pyrolyzing chloroplatinic acid under various process parameters to obtain a high catalytic activity and durability. The results show that platinum particles generated by pyrolyzing chloroplatinic acid are uniformly loaded on graphene without agglomeration. The average particle size of platinum particles is about 2.12 nm. The oxygen reduction reaction catalytic activity of catalyst samples first increases, then decreases with increasing platinum loading in cyclic voltammetry and LSV. Compared with the commercial Pt/C (20 wt% Pt) catalyst, the initial potential and the current density retention rate of the catalyst decorated with 8% platinum are 55 mV and 23.7% higher, respectively. From i-t curves, it was found that the stability of the catalyst prepared in this paper was improved compared with the commercial Pt/C catalyst. The catalysts prepared in the present research exhibits superior catalytic activity and stability.


2022 ◽  
Vol 12 (2) ◽  
pp. 690
Author(s):  
Su-Young Choi ◽  
Dong-Bum Kim ◽  
Wan-Goo Park ◽  
Jin-Sang Park ◽  
Sang-Keun Oh

This study analyzed the characteristics of viscosity change and oil leakage stability according to the average particle size and content of organic and mineral-based extenders such as CaCO3(CA) and anti-sedimentation (ASE) among materials consisting of bituminous emulsion mastic (BEM). The fabrication of samples for research was done using a melting method of 2L capacity with the production mixing ratio of BEM used in the actual manufacturing process as a standard mixing ratio. Each sample size was adjusted to 16 μm, 5 μm, 2 μm, 1.4 μm and 1 μm, the average particle size of CA as a variable, and the content of ASE for each particle size was set to increase from 1 to 6 times the standard mixing ratio. The analysis found that in all average particle sizes of CA, the viscosity increased as the content of anti-sedimentation increased, and the viscosity was highest at the CA average particle size of 16 μm. The viscosity increased as the average particle size decreased at 5 μm, 2 μm, 1.4 μm and 1 μm. In addition, it was confirmed that the oil leakage stability increased as the average particle size of CA decreased, and the content of ASE increased. The evaluation results showed that specimens that met both workability and oil leakage stability conditions were the specimens with 4 times and 5 times the ASE content at the CA average particle size of 2 μm, and those with twice the ASE content at the CA average particle size of 1.4 μm.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 258
Author(s):  
Kyung-Soo Sung ◽  
So-Yeon Kim ◽  
Min-Keun Oh ◽  
Namil Kim

Thermally conductive adhesives were prepared by incorporating magnesium oxide (MgO) and boron nitride (BN) into fluorosilicone resins. The effects of filler type, size, and shape on thermal conductivity and adhesion properties were analyzed. Higher thermal conductivity was achieved when larger fillers were used, but smaller ones were advantageous in terms of adhesion strength. Bimodal adhesives containing spherical MgOs with an average particle size of 120 μm and 90 μm exhibited the highest conductivity value of up to 1.82 W/mK. Filler shape was also important to improve the thermal conductivity as the filler type increased. Trimodal adhesives revealed high adhesion strength compared to unimodal and bimodal adhesives, which remained high after aging at 85 °C and 85% relative humidity for 168 h. It was found that the thermal and adhesion properties of fluorosilicone composites were strongly affected by the packing efficiency and interfacial resistance of the particles.


Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 142
Author(s):  
Sherif Ashraf Fahmy ◽  
Noha Khalil Mahdy ◽  
Hadeer Al Mulla ◽  
Aliaa Nabil ElMeshad ◽  
Marwa Y. Issa ◽  
...  

Antimicrobial drugs face numerous challenges, including drug resistance, systemic toxic effects, and poor bioavailability. To date, treatment choices are limited, which warrants the search for novel potent antivirals, including those extracted from natural products. The seeds of Peganum harmala L. (Zygophyllaceae family) have been reported to have antimicrobial, antifungal, and anticancer activities. In the present study, a 2-hydroxy propyl-β-cyclodextrin (HPβCD)/harmala alkaloid-rich fraction (HARF) host–guest complex was prepared using a thin-film hydration method to improve the water solubility and bioavailability of HARF. The designed complex was then co-encapsulated with ascorbic acid into PLGA nanoparticles coated with polyethylene glycol (HARF–HPßCD/AA@PLGA-PEG NPs) using the W/O/W multiple emulsion-solvent evaporation method. The average particle size, PDI, and zeta potential were 207.90 ± 2.60 nm, 0.17 ± 0.01, and 31.6 ± 0.20 mV, respectively. The entrapment efficiency for HARF was 81.60 ± 1.20% and for ascorbic acid was 88 ± 2.20%. HARF–HPßCD/AA@PLGA-PEG NPs had the highest antibacterial activity against Staphylococcus aureus and Escherichia coli (MIC of 0.025 mg/mL). They also exhibited high selective antiviral activity against the H1N1 influenza virus (IC50 2.7 μg/mL) without affecting the host (MDCK cells). In conclusion, the co-encapsulation of HPCD–HARF complex and ascorbic acid into PLGA-PEG nanoparticles significantly increased the selective H1N1 killing activity with minimum host toxic effects.


2022 ◽  
Vol 32 (1) ◽  
Author(s):  
Kanika Dulta ◽  
Gözde Koşarsoy Ağçeli ◽  
Parveen Chauhan ◽  
Rohit Jasrotia ◽  
P. K. Chauhan ◽  
...  

AbstractRhizome extract of Bergenia ciliata was used as a bio-functional reducing material for the green synthesis of copper oxide nanoparticles (CuO NPs). CuO NPs were characterized using ultraviolet–visible spectroscopy, Fourier transforms infrared spectroscopy, X-ray diffraction (XRD), dynamic light scattering, scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDX). XRD analysis revealed the monoclinic phase of synthesized CuO NPs with an average particle size of 20 nm. Spherical shaped nanoscale CuO particles were observed by EDX and SEM confirming the Cu and O presence in the synthesized NPs. CuO NPs showed antibacterial effects against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Salmonella typhi. The antioxidant effect was measured and IC50 values for 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 2,2-diphenyl-1-picrylhydrazyl and Ferric reducing antioxidant power assays were found to be 91.2, 72.4 and 109 μg mL− 1 respectively. Under sunlight, the CuO NPs reported extraordinary photocatalytic activity against Methylene Blue and Methyl Red degradation with efficiencies of 92–85%. CuO NPs have excellent potential application for the photocatalytic degradation of organic pollutants and in the development of antibacterial materials. This study offers new insights in the field of inexpensive and green synthesis-based antimicrobial effective CuO photocatalysts from B. ciliata to remove harmful dyes from industrial-based waters with high degradation efficiency, which is environmentally friendly.


Sign in / Sign up

Export Citation Format

Share Document