Late Pleistocene environmental information on the Diexi paleo-dammed lake of the upper Minjiang River in the eastern margin of the Tibetan Plateau, China

2020 ◽  
Vol 17 (5) ◽  
pp. 1172-1187
Author(s):  
Lan-sheng Wang ◽  
Xiao-qun Wang ◽  
Jun-hui Shen ◽  
Guan Yin ◽  
Jie Cui ◽  
...  
2013 ◽  
Vol 40 (4) ◽  
pp. 360-367 ◽  
Author(s):  
Chun-Ru Liu ◽  
Gong-Ming Yin ◽  
Hui-Ping Zhang ◽  
Wen-Jun Zheng ◽  
Pierre Voinchet ◽  
...  

Abstract The Minjiang River terrace along the Longmen Shan fault zone near Wenchuan, at the eastern margin of the Tibetan Plateau, China, provides archives for tectonic activity and quaternary climate change. However, previous studies were not able to provide ages older than 100 ka due to the limitations of dating material or/and methods applied to date the fluvial sediments. In this study, we used the ESR signal of the Ti-Li center in quartz to obtain the ages of four higher terraces (T3–T6). According to the results, the terraces T3 to T6 were formed at 64±19 ka, 101±15 ka, 153±33 ka, and 423±115 ka, respectively. Combined with previous studies, these results indicate that the formations of all terraces correspond to glacial/interglacial transition periods, such as, T1-T5 being correlated to MIS2/1, MIS4/3, MIS5d/5c, and MIS6/5e respectively, while T6 probably to MIS12/11. According to these data, it is found that the average incision rate was significantly higher over the last 150 ka than that previous 100 ka (250 to 150 ka). As both tectonics and climate have affected the formation of these terraces, in addition to the overall uplifting of Tibetan Plateau, the regional uplift due to isostasy would be an additional tectonic factor in the formation of river terraces in the eastern margin of Tibetan plateau.


2021 ◽  
Author(s):  
Junxue Ma ◽  
Jian Chen ◽  
Zhijiu Cui ◽  
Wendy Zhou ◽  
Ruichen Chen ◽  
...  

Abstract Landslide-dammed lake outburst floods (LLOFs) may pose serious safety threats to nearby residents and their livelihoods, as well as cause major damages to the downstream areas in mountainous regions. This study presents the Diexi ancient landslide-dammed lake (DALL) in the Upper Minjiang River at the eastern margins of the Tibetan Plateau, which was known to an estimated previous maximal lake area of 1.1 × 107 m2 and an impounded volume of 2.9 × 109 m3. Then, at approximately 27 ka BP, the ancient landslide dam failed and catastrophic LLOFs occurred. It was determined that the peak discharge of the Diexi ancient LLOFs could be reconstructed using regression, parametric, and boulder competence approaches. The reconstructed maximum peak discharge might be 72,232.66 m3/s, with an average velocity of 17.23 m/s, indicating that the Diexi ancient LLOFs were the most gigantic outburst floods to occur in the Upper Minjiang River Valley since the Late Pleistocene Period. The differences in the widths and slopes within the former and the later reaches of the dam indicated that the geomorphic influences on the river channel resulting from the DALL and its LLOFs have existed for tens of thousands of years. These findings were of major significance in deepening the understanding of the existence and disappearances of important river-knickpoints on a time scale of tens of thousands of years.


2014 ◽  
Vol 396 ◽  
pp. 88-96 ◽  
Author(s):  
Mong-Han Huang ◽  
Roland Bürgmann ◽  
Andrew M. Freed

Sign in / Sign up

Export Citation Format

Share Document