landslide dam
Recently Published Documents


TOTAL DOCUMENTS

282
(FIVE YEARS 96)

H-INDEX

27
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Tiantian Zhang ◽  
Yueping Yin ◽  
Bin Li ◽  
Yang Gao ◽  
Meng Wang

Abstract On October 17 and 29, 2018, two rock and glacier avalanches occurred on the western slope of the Sedongpu Basin upstream of the Yarlung Zangbo River in the Tibetan Plateau, forming the disaster chains and causing damage to many bridges and roads. Based on the comparative analysis of multiple pre-and post-remote sensing images, the initial sliding body, which was composed of rock and glacial material, was located on a steep slope above an elevation of 6000 m. Under the coupling effect of multiple factors such as gravity, rainfall, and weather changes, the initial sliding body detached from the source zone and then transformed into a debris flow after impact and fragmentation. The debris flow traveled downstream and scraped loose glacial till in its path, causing the volume of the sliding body to increase. In addition, the debris flow traveled 10 km under low frictional resistance, as a result of the lubrication via early rainfall and glacial meltwater. Eventually, the debris flow rushed out onto the valley floor, forming a landslide dam and blocking the Yarlung Zangbo River. The deposit volumes on October 17 and 29 were 20.4 million m3 and 10.1 million m3, respectively, with a total mean thickness of ~22m. This study provides an insight into the dynamic process as they unfolded, through multitemporal satellite imagery and numerical simulation. Furthermore, we also discuss the potential cause of rock/ice avalanche and disaster scenarios, as well as the tendency of the rock and glacier avalanches are discussed.


Landslides ◽  
2022 ◽  
Author(s):  
Hang Wu ◽  
Mark A. Trigg ◽  
William Murphy ◽  
Raul Fuentes

AbstractTo address the current data and understanding knowledge gap in landslide dam inventories related to geomorphological parameters, a new global-scale landslide dam dataset named River Augmented Global Landslide Dams (RAGLAD) was created. RAGLAD is a collection of landslide dam records from multiple data sources published in various languages and many of these records we have been able to precisely geolocate. In total, 779 landslide dam records were compiled from 34 countries/regions. The spatial distribution, time trend, triggers, and geomorphological characteristic of the landslides and catchments where landslide dams formed are summarized. The relationships between geomorphological characteristics for landslides that form river dams are discussed and compared with those of landslides more generally. Additionally, a potential threshold for landslide dam formation is proposed, based on the relationship of landslide volume to river width. Our findings from our analysis of the value of the use of additional fluvial datasets to augment the database parameters indicate that they can be applied as a reliable supplemental data source, when the landslide dam records were accurately and precisely geolocated, although location precision in smaller river catchment areas can result in some uncertainty at this scale. This newly collected and supplemented dataset will allow the analysis and development of new relationships between landslides located near rivers and their actual propensity to block those particular rivers based on their geomorphology.


2021 ◽  
Vol 9 ◽  
Author(s):  
Meng Yang ◽  
Qiming Zhong ◽  
Shengyao Mei ◽  
Yibo Shan

Spillway excavation is often adopted as a precautionary engineering measure for disaster mitigation before landslide dam breaching. Based on the landslide dam breach mechanisms, this paper focuses on developing a numerical model to comprehensively discuss the issue based on three documented landslide dam failures, such as Tangjiashan, Xiaogangjian, and Baige landslide dams. The spillway cross section morphologies were modeled with different sizes under common shape (i.e., an inverted trapezoid) and slope conditions. The influence of cross section on dam breach processes was analyzed under conditions of different depth, bottom width, slope ratio in the cross and longitudinal sections, with/without spillway. The following conclusions can be drawn: 1) excavation of a spillway can effectively reduce the peak breach flow, therefore delay the time to peak; 2) the peak breach flow dramatically decreases and the time to peak delays as the spillway depth increases; 3) the peak breach flow changes little and the time to peak occurs earlier with the increment in spillway bottom width; 4) the peak breach flow decreases and the time to peak delays with the decrease of slope ratio in cross section in the spillway; 5) the slope ratio in the longitudinal section has little influence on the breach process. Hence, if conditions permit, the spillway with large spillway depth, small bottom width, and gentle slope ratio in the cross section is the preferable section morphology for the emergency disposal of the landslide dam.


2021 ◽  
Author(s):  
Hang Wu ◽  
Mark Trigg ◽  
William Murphy ◽  
Raul Fuentes
Keyword(s):  

2021 ◽  
pp. 106483
Author(s):  
Wei Hu ◽  
Yan Li ◽  
Yu Fan ◽  
Mengsu Xiong ◽  
Hui Luo ◽  
...  

2021 ◽  
Vol 140 ◽  
pp. 104438
Author(s):  
Tingkai Nian ◽  
Dongyang Li ◽  
Qiuhua Liang ◽  
Hao Wu ◽  
Xingsen Guo

Landslides ◽  
2021 ◽  
Author(s):  
Zhuge Xia ◽  
Mahdi Motagh ◽  
Tao Li ◽  
Sigrid Roessner

AbstractA large, deep-seated ancient landslide was partially reactivated on 17 June 2020 close to the Aniangzhai village of Danba County in Sichuan Province of Southwest China. It was initiated by undercutting of the toe of this landslide resulting from increased discharge of the Xiaojinchuan River caused by the failure of a landslide dam, which had been created by the debris flow originating from the Meilong valley. As a result, 12 townships in the downstream area were endangered leading to the evacuation of more than 20000 people. This study investigated the Aniangzhai landslide area by optical and radar satellite remote sensing techniques. A horizontal displacement map produced using cross-correlation of high-resolution optical images from Planet shows a maximum horizontal motion of approximately 15 meters for the slope failure between the two acquisitions. The undercutting effects on the toe of the landslide are clearly revealed by exploiting optical data and field surveys, indicating the direct influence of the overflow from the landslide dam and water release from a nearby hydropower station on the toe erosion. Pre-disaster instability analysis using a stack of SAR data from Sentinel-1 between 2014 and 2020 suggests that the Aniangzhai landslide has long been active before the failure, with the largest annual LOS deformation rate more than 50 mm/yr. The 3-year wet period that followed a relative drought year in 2016 resulted in a 14% higher average velocity in 2018–2020, in comparison to the rate in 2014–2017. A detailed analysis of slope surface kinematics in different parts of the landslide indicates that temporal changes in precipitation are mainly correlated with kinematics of motion at the head part of the failure body, where an accelerated creep is observed since spring 2020 before the large failure. Overall, this study provides an example of how full exploitation of optical and radar satellite remote sensing data can be used for a comprehensive analysis of destabilization and reactivation of an ancient landslide in response to a complex cascading event chain in the transition zone between the Qinghai-Tibetan Plateau and the Sichuan Basin.


Sign in / Sign up

Export Citation Format

Share Document