dammed lake
Recently Published Documents


TOTAL DOCUMENTS

208
(FIVE YEARS 49)

H-INDEX

26
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Fengshan Jiang ◽  
Xiaoai Dai ◽  
Zhiqiang Xie ◽  
Tong Xu ◽  
Siqiao Yin ◽  
...  

Abstract The Sichuan-Tibet region of China has always been an area with frequent earthquake disasters, accompanied by the occurrence and collapse of dammed lakes. The collapse of dammed lakes seriously threatens the lives and property safety of downstream personnel. At the same time, domestic and foreign scholars are concerned about the surrounding dammed lake there are few ecological studies on the lake, and the impact of the dammed lake on the ecology has very important enlightenment significance for our lake construction project. It is the purpose of this article to scientifically predict the risk of dam break in a barrier lake, explore its impact on the ecological environment and put forward control measures. Based on the four major dammed lake events of Diexihaizi, Tangjiashan dammed lake, and Hongshihe dammed lake in the Sichuan-Tibet area, this paper extracts water bodies from remote sensing images and uses the HEC-RAS model to determine whether there is a risk of the dam break and whether Forecast the route of the dam; and use the InVEST model to evaluate and analyze the habitat of the smallest administrative district (county/district) where it is located from 1990 to 2020 and make an evaluation based on the results of flood inundation. The results show that the stable dammed lake (Diexi Haizi) after engineering treatment has a stabilizing effect on the habitat quality index. The formation of the dammed lake has changed the nearby land-use types and the regional landscape ecological pattern. The habitat quality index will decrease slightly in the 1 km area around Sai Lake, but the habitat quality will increase in the 3 km area and the 5 km area. Artificial flood discharge and engineering reinforcement of barrier lakes are necessary. In this paper, the areas with strong human control will recover better than other regions' habitat quality index.


Author(s):  
Javed Akhter Qureshi ◽  
Garee Khan ◽  
Nauman Ali ◽  
Sajid Ali ◽  
Shams ur Rehman ◽  
...  

Author(s):  
Javed Akhter Qureshi ◽  
Garee Khan ◽  
Nauman Ali ◽  
Sajid Ali ◽  
Shams ur Rehman ◽  
...  

2021 ◽  
Author(s):  
Himanshu Kaushik ◽  
AL. Ramanathan ◽  
Mohd Soheb ◽  
Monica Sharma Shamurailatpam ◽  
Kalyan Biswal ◽  
...  

Author(s):  
Radosław Rogoziński ◽  
Alina Maciejewska

AbstractVarved clay deposits from ice-dammed lakes are a particularly important and broadly applied raw material used for the production of high-quality ceramics (red bricks, roof tiles, etc.), but the mineralogy and geochemistry of these sediments are not fully understood. The aim of the present study was to determine the chemical and mineralogical composition of ice-dammed lake sediments of the Lębork deposit. Major-element analysis of the compositions of selected samples from the ice-dammed lake clays was performed by X-ray fluorescence (XRF) and trace elements were determined by inductively coupled plasma-mass spectrometry. The mineralogical composition of clay samples was determined by X-ray diffraction (XRD). Analyses of the chemical composition of the ice-dammed lake clays of the Lębork deposit showed that the dominant component was SiO2 with a mean content of 56.13 wt.%; the second most abundant component was Al2O3, with a mean content for the entire deposit of 11.61 wt.%. Analysis by ICP-MS indicated the presence of rare earth elements (REE), e.g. cerium, neodymium, lanthanum, and praseodymium; their mean contents are: 56.9, 27.0, 26.3, and 7.3 ppm, respectively. Mineralogical analysis of the varved clays identified quartz, muscovite, calcite, and clay minerals – illite, kaolinite, and montmorillonite. The material filling the Lębork basin is characterized by small lateral and vertical variability in chemical composition. The results of the present study may be of considerable importance in determining the parent igneous, metamorphic, and sedimentary rocks, the weathering products of which supplied material to the ice-dammed lake, as well as in determining the mechanisms and character of the sedimentation process itself.


2021 ◽  
Author(s):  
Junxue Ma ◽  
Jian Chen ◽  
Zhijiu Cui ◽  
Wendy Zhou ◽  
Ruichen Chen ◽  
...  

Abstract Landslide-dammed lake outburst floods (LLOFs) may pose serious safety threats to nearby residents and their livelihoods, as well as cause major damages to the downstream areas in mountainous regions. This study presents the Diexi ancient landslide-dammed lake (DALL) in the Upper Minjiang River at the eastern margins of the Tibetan Plateau, which was known to an estimated previous maximal lake area of 1.1 × 107 m2 and an impounded volume of 2.9 × 109 m3. Then, at approximately 27 ka BP, the ancient landslide dam failed and catastrophic LLOFs occurred. It was determined that the peak discharge of the Diexi ancient LLOFs could be reconstructed using regression, parametric, and boulder competence approaches. The reconstructed maximum peak discharge might be 72,232.66 m3/s, with an average velocity of 17.23 m/s, indicating that the Diexi ancient LLOFs were the most gigantic outburst floods to occur in the Upper Minjiang River Valley since the Late Pleistocene Period. The differences in the widths and slopes within the former and the later reaches of the dam indicated that the geomorphic influences on the river channel resulting from the DALL and its LLOFs have existed for tens of thousands of years. These findings were of major significance in deepening the understanding of the existence and disappearances of important river-knickpoints on a time scale of tens of thousands of years.


2021 ◽  
Vol 18 (4) ◽  
pp. 990-1002
Author(s):  
Xiao-qun Wang ◽  
Jie Wei ◽  
Jia-kang Zhao ◽  
Zhou Zhou ◽  
Xin Huang

2021 ◽  
Author(s):  
Oscar Vilca ◽  
Martin Mergili ◽  
Adam Emmer ◽  
Holger Frey ◽  
Christian Huggel

<p>On 23<sup>rd</sup> February 2020, a landslide-triggered GLOF process chain was initiated from the SW slope of Nevado Salkantay, Cordillera Vilcabamba, Peru. An initial slide evolved into a rock/ice avalanche and part of the released material fell into the moraine-dammed Lake Salkantaycocha, triggering a displacement wave which overtopped and eroded the distal face of the dam. Dam overtopping resulted in a far-reaching GLOF causing fatalities and people missing in the valley downstream. In this contribution, we analyse the situation before and after the event as well as the dynamics of the GLOF process chain, based on field investigations, remotely sensed data, meteorological data, and a computer simulation with a two-phase flow model. Comparing pre- and post-event field photographs helped us to estimate the initial landslide volume of 1–2 million m³. Meteorological data suggest rainfall and/or melting/thawing processes as possible causes of the landslide. The simulation reveals that the landslide into the lake created a displacement wave height of up to 27 m. We reconstructed a released volume 57,000 m<sup>3</sup> (less than 10% of lake volume) and estimated a total GLOF peak discharge almost 10,000 m³/s at the dam. The lake had 40 m dam freeboard at the time of a GLOF, and the lake level increased by 10–15 m directly after the event, since most of the volume of landslide material deposited in the lake (roughly 1.3 million m³). The model results show a good fit with the observations, including the travel time to the uppermost village. The findings of this study serve as a contribution to the understanding of landslide-triggered GLOFs in changing high-mountain regions.</p>


2021 ◽  
Author(s):  
Carl Regnéll ◽  
Robin Blomdin ◽  
Bradley W. Goodfellow ◽  
Sarah L. Greenwood ◽  
Richard Gyllencreutz ◽  
...  

<p>Here we present the use of ice-dammed lake-related landforms and sediments for reconstructing the final phases of decay of the Scandinavian Ice Sheet.</p><p>In the late stages of the deglaciation, extensive glacial lakes were dammed between the easterly retreating Scandinavian Ice Sheet and the water divide within the mountains to the west. Using high-resolution airborne LiDAR-data, shorelines and other landforms relating to these ice-dammed lakes have now been discovered over larger areas and in greater numbers than previously known, opening a treasure trove of palaeoglaciological information of vast potential for reconstructing the final decay phase of the Scandinavian Ice Sheet.</p><p>The geomorphological imprint of the ice-dammed lakes is of particular importance in northern Scandinavia, as geological evidence pertaining unequivocally to the final ice sheet decay is sparse. Its interpretation is complicated since the ice sheet is thought to have mainly been cold-based during final decay, inhibiting sliding at the ice-bed interface and limiting the construction (or destruction) of landforms indicative of the changing shape and flow of the ice sheet. Furthermore, dated sediment sequences marking the onset of ice-free conditions are woefully few in northern Scandinavia. Likewise, available cosmogenic nuclide exposure dates provide high age uncertainty and inadequate geographical cover, leaving the timing and location of final ice sheet decay still elusive.</p><p>Using examples from northern and central Scandinavia, we show that ice-dammed lakes are an intricate part of the deglacial dynamics and show how mapping and dating them offer a solution to these problems. Even with a frozen ice-bed interface, surface melting and meltwater drainage creates landforms unequivocally associated with ice sheet decay: drainage channels, dammed lake shorelines, and deltas. Meltwater drainage routes and ice-dammed lakes are therefore powerful tools for reconstructing a disintegrating ice sheet; a ponded lake reveals the location of its requisite ice-dam, and drainage pathways reveal ice-free conditions. A dated sequence of ice-dammed lake sediments can therefore constrain both ice and lake coverage at that time for a much larger area than the dated site itself. Furthermore, the extent of different ice-dammed lake stages and their requisite ice-damming positions enables the pattern of ice margin change to be traced, and the relative age of ice-marginal positions determined using cross-cutting relations. The shorelines’ present-day tilts are also used to inform patterns and magnitudes of postglacial isostatic uplift, information otherwise lacking from the continental interior but of particular importance for modelling former ice sheet volumes and understanding the crustal response to ice sheet loading. Reconstructing the extents and timing of ice-dammed lakes and the study of related landforms and deposits can therefore greatly improve our understanding of the final decay of the Scandinavian Ice Sheet and provide potential analogues for the predicted future behaviours of modern ice sheets.</p>


Sign in / Sign up

Export Citation Format

Share Document