strike slip
Recently Published Documents


TOTAL DOCUMENTS

3115
(FIVE YEARS 819)

H-INDEX

97
(FIVE YEARS 8)

2022 ◽  
Vol 14 (2) ◽  
pp. 401
Author(s):  
Mokhamad Nur Cahyadi ◽  
Buldan Muslim ◽  
Danar Guruh Pratomo ◽  
Ira Mutiara Anjasmara ◽  
Deasy Arisa ◽  
...  

The study of ionospheric disturbances associated with the two large strike-slip earthquakes in Indonesia was investigated, which are West Sumatra on 2 March 2016 (Mw = 7.8), and Palu on 28 September 2018 (Mw = 7.5). The anomalies were observed by measuring co-seismic ionospheric disturbances (CIDs) using the Global Navigation Satellite System (GNSS). The results show positive and negative CIDs polarization changes for the 2016 West Sumatra earthquake, depending on the position of the satellite line-of-sight, while the 2018 Palu earthquake shows negative changes only due to differences in co-seismic vertical crustal displacement. The 2016 West Sumatra earthquake caused uplift and subsidence, while the 2018 Palu earthquake was dominated by subsidence. TEC anomalies occurred about 10 to 15 min after the two earthquakes with amplitude of 2.9 TECU and 0.4 TECU, respectively. The TEC anomaly amplitude was also affected by the magnitude of the earthquake moment. The disturbance signal propagated with a velocity of ~1–1.72 km s−1 for the 2016 West Sumatra earthquake and ~0.97–1.08 km s−1 for the 2018 Palu mainshock earthquake, which are consistent with acoustic waves. The wave also caused an oscillation signal of ∼4 mHz, and their azimuthal asymmetry of propagation confirmed the phenomena in the Southern Hemisphere. The CID signal could be identified at a distance of around 400–1500 km from the epicenter in the southwestern direction.


Author(s):  
L.K. Miroshnikova ◽  
A.Yu. Mezentsev ◽  
G.A. Kadyralieva ◽  
M.A. Perepelkin

This study focuses on the markers of tectonically stressed zones inside the rock mass, that were identified during the regional geodynamic zoning of the mine fields of the Talnakh orogenic system. Identification features for tracing geodynamically active structures within the western flank of the Talnakh orogenic system have been identified based on morphometric analysis of the Tunguska series sediments, which are the upper layer of the ore-bearing intrusions and associated ore deposits. In the larger morphostructural groups, the boundaries of contrastingly alternating zones of elevated and depressed absolute depths at the base and the roof of the Tunguska series sediments represent the boundaries of tectonic blocks of different elevation levels with sharply contrasting indices of terrain stress. The circular-shaped structures highlighted in the morphostructural schemes spatially coincide with the tectonic forms were formed as the result of strike-slip and torsional processes. A heterogeneity, which is reflected in the allocation of blocks with different values of the stress distribution coefficient (K) is identified in the initial stress field of the Tunguska series sediments. The boundaries of the geodynamic blocks that were identified using to different methods are identical. It is established that the assumed faults correspond to the faults identified based on the detailed exploration data.


2022 ◽  
Author(s):  
Haekal Azief Haridhi ◽  
Bor-Shouh Huang ◽  
Kuo-Liang Wen ◽  
Arif Mirza ◽  
Syamsul Rizal ◽  
...  

Abstract. Near the northern border of Sumatra, the right-lateral strike-slip Sumatran Fault Zone splits into two branches and extends into the offshore, as revealed by seismic sounding surveys. However, due to its strike-slip faulting characteristics, the Sumatran Fault Zone’s activity is rarely believed to cause tsunami hazards in this region. According to two reprocessed reflection seismic profiles, the extended Sumatran Fault Zone is strongly associated with chaotic facies, indicating that large submarine landslides have been triggered. Coastal steep slopes and new subsurface characteristics of submarine landslide deposits were mapped using recently acquired high-resolution shallow bathymetry data. Slope stability analysis revealed some targets with steep morphology to be close to failure. In an extreme case, an earthquake of Mw 7 or more occurred, and the strong ground shaking triggered a submarine landslide off the northern shore of Sumatra. Based on a simulation of tsunami wave propagation in shallow water, the results of this study indicate a potential tsunami hazard from a submarine landslide triggered by the strike-slip fault system. The landslide tsunami hazard assessment and early warning systems in this study area can be improved on the basis of this proposed scenario.


Author(s):  
Marjolein Blasweiler ◽  
Matthew W. Herman ◽  
Fenna Houtsma ◽  
Rob Govers

Abstract An historically unprecedented seismic moment was released by crustal events of the 2019–2020 earthquake sequence near southwest Puerto Rico. The sequence involved at least two, and perhaps three interacting fault systems. The largest Mw 6.4 event was likely triggered by left lateral strike-slip events along the eastern extension of the North Boquerón Bay-Punta Montalva fault zone. The mainshock occurred in a normal fault zone that extends into a region where previous studies documented extensional deformation, beyond the Ponce fault and the Bajo Tasmanian fault. Coulomb stress changes by the mainshock may have triggered further normal-faulting aftershocks, left lateral strike-slip events in the region where these two fault zones interacted, and possibly right lateral strike-slip aftershocks along a third structure extending southward, the Guayanilla fault zone. Extension directions of the seismic sequence are consistently north-northwest–south-southeast-oriented, in agreement with the Global Navigation Satellite Systems-inferred motion direction of eastern Hispaniola relative to western Puerto Rico, and with crustal stress estimates for the overriding plate boundary zone.


MAUSAM ◽  
2022 ◽  
Vol 44 (4) ◽  
pp. 365-372
Author(s):  
SANJA Y SEN ◽  
SEEMA SARKAR ◽  
ARABINDA MUKHOPADHYAY

An asoismically creeping surface-breaking strike-slip fault inclined to the vertical at an arbitrary angle, situated in a simple model of the lithosphere-asthenosphere system consisting of a visoelastic half space is considered. The exact solutions for displacements, stresses and strains In the model are obtained. Computed results show that the inclination of the fault has a significant influence on the values of the displacements, stresses and strains. The rate of accumulation of shear stress tending to cause strike-slip movement has been found to be greatest for vertical strike-slip fault, while for faults inclined at smaller angles to the horizontal, this rate is significantly smaller. The uses of such theoretical models in obtaining greater insight into the earthquake processes in seismically active regions and their relations to the dynamics of the lithosphere-asthenosphere system are examined.


2022 ◽  
Vol 577 ◽  
pp. 117242
Author(s):  
T.S. Waldien ◽  
R.O. Lease ◽  
S.M. Roeske ◽  
J.A. Benowitz ◽  
P.B. O'Sullivan

Sign in / Sign up

Export Citation Format

Share Document